test_sum_op.py 10.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18 19
import unittest
import numpy as np
from op_test import OpTest
20 21
import paddle
import paddle.fluid as fluid
T
tangwei12 已提交
22 23
import paddle.fluid.core as core
from paddle.fluid.op import Operator
24 25 26 27 28


class TestSumOp(OpTest):
    def setUp(self):
        self.op_type = "sum"
C
chengduo 已提交
29
        self.init_kernel_type()
30 31
        self.use_mkldnn = False
        self.init_kernel_type()
Z
zhupengyang 已提交
32 33 34
        x0 = np.random.random((3, 40)).astype(self.dtype)
        x1 = np.random.random((3, 40)).astype(self.dtype)
        x2 = np.random.random((3, 40)).astype(self.dtype)
35
        self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
36 37
        y = x0 + x1 + x2
        self.outputs = {'Out': y}
38
        self.attrs = {'use_mkldnn': self.use_mkldnn}
39

C
chengduo 已提交
40
    def init_kernel_type(self):
41
        self.dtype = np.float64
C
chengduo 已提交
42

43
    def test_check_output(self):
Q
qijun 已提交
44
        self.check_output()
45 46

    def test_check_grad(self):
Q
qijun 已提交
47
        self.check_grad(['x0'], 'Out')
48

49 50 51
    def init_kernel_type(self):
        pass

52

53
class TestSelectedRowsSumOp(unittest.TestCase):
C
chengduo 已提交
54
    def setUp(self):
Q
qiaolongfei 已提交
55 56 57
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
58
        self.dtype = np.float64
C
chengduo 已提交
59
        self.init_kernel_type()
Q
qiaolongfei 已提交
60

C
chengduo 已提交
61
    def check_with_place(self, place, inplace):
Q
Qiao Longfei 已提交
62 63 64 65 66 67 68 69
        self.check_input_and_optput(core.Scope(), place, inplace, True, True,
                                    True)
        self.check_input_and_optput(core.Scope(), place, inplace, False, True,
                                    True)
        self.check_input_and_optput(core.Scope(), place, inplace, False, False,
                                    True)
        self.check_input_and_optput(core.Scope(), place, inplace, False, False,
                                    False)
T
tangwei12 已提交
70

C
chengduo 已提交
71
    def init_kernel_type(self):
C
chengduo 已提交
72
        pass
C
chengduo 已提交
73

C
chengduo 已提交
74 75 76 77
    def _get_array(self, rows, row_numel):
        array = np.ones((len(rows), row_numel)).astype(self.dtype)
        for i in range(len(rows)):
            array[i] *= rows[i]
Q
qiaolongfei 已提交
78 79
        return array

T
tangwei12 已提交
80 81 82
    def check_input_and_optput(self,
                               scope,
                               place,
Q
Qiao Longfei 已提交
83
                               inplace,
T
tangwei12 已提交
84 85 86 87 88 89 90
                               w1_has_data=False,
                               w2_has_data=False,
                               w3_has_data=False):

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)
T
tangwei12 已提交
91 92

        # create Out Variable
Q
Qiao Longfei 已提交
93 94 95 96 97
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()
T
tangwei12 已提交
98 99

        # create and run sum operator
Q
Qiao Longfei 已提交
100
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
T
tangwei12 已提交
101 102
        sum_op.run(scope, place)

T
tangwei12 已提交
103
        has_data_w_num = 0
Q
qiaolongfei 已提交
104 105
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
T
tangwei12 已提交
106
                has_data_w_num += 1
T
tangwei12 已提交
107

Q
qiaolongfei 已提交
108 109 110 111 112
        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
            self.assertTrue(
                np.array_equal(
                    np.array(out.get_tensor()),
C
chengduo 已提交
113
                    self._get_array(self.rows, self.row_numel) *
Q
qiaolongfei 已提交
114 115 116
                    has_data_w_num))
        else:
            self.assertEqual(len(out.rows()), 0)
T
tangwei12 已提交
117

Q
qiaolongfei 已提交
118
    def create_selected_rows(self, scope, place, var_name, has_data):
T
tangwei12 已提交
119
        # create and initialize W Variable
Q
qiaolongfei 已提交
120 121
        if has_data:
            rows = self.rows
T
tangwei12 已提交
122 123 124 125 126
        else:
            rows = []

        var = scope.var(var_name)
        w_selected_rows = var.get_selected_rows()
Q
qiaolongfei 已提交
127
        w_selected_rows.set_height(self.height)
T
tangwei12 已提交
128
        w_selected_rows.set_rows(rows)
C
chengduo 已提交
129
        w_array = self._get_array(self.rows, self.row_numel)
T
tangwei12 已提交
130 131 132 133 134 135 136
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        return var

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
Q
Qiao Longfei 已提交
137 138
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
T
tangwei12 已提交
139
        for place in places:
Q
Qiao Longfei 已提交
140 141
            for inplace in [True, False]:
                self.check_with_place(place, inplace)
T
tangwei12 已提交
142 143


C
chengduo 已提交
144 145 146 147 148
class TestLoDTensorAndSelectedRowsOp(TestSelectedRowsSumOp):
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 2, 4, 5, 6]
149
        self.dtype = np.float64
C
chengduo 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

    def check_with_place(self, place, inplace):
        scope = core.Scope()
        if inplace:
            self.create_lod_tensor(scope, place, "x1")
            self.create_selected_rows(scope, place, "x2", True)
            out = scope.var("x1").get_tensor()
            out_name = "x1"
        else:
            self.create_selected_rows(scope, place, "x1", True)
            self.create_lod_tensor(scope, place, "x2")
            out = scope.var("out").get_tensor()
            out_name = "out"

        # create and run sum operator
        sum_op = Operator("sum", X=["x1", "x2"], Out=out_name)
        sum_op.run(scope, place)

        result = np.ones((1, self.height)).astype(np.int32).tolist()[0]
        for ele in self.rows:
            result[ele] += 1

        out_t = np.array(out)
        self.assertEqual(out_t.shape[0], self.height)
        self.assertTrue(
            np.array_equal(out_t,
                           self._get_array([i for i in range(
                               self.height)], self.row_numel) * np.tile(
                                   np.array(result).reshape(self.height, 1),
                                   self.row_numel)))

    def create_lod_tensor(self, scope, place, var_name):
        var = scope.var(var_name)
        w_tensor = var.get_tensor()
        w_array = self._get_array([i for i in range(self.height)],
                                  self.row_numel)
        w_tensor.set(w_array, place)
        return var


#----------- test fp16 -----------
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
chengduo 已提交
193 194 195 196 197
class TestFP16SumOp(TestSumOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
C
chengduo 已提交
198 199 200
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=2e-2)
C
chengduo 已提交
201 202 203 204

    # FIXME: Because of the precision fp16, max_relative_error
    # should be 0.15 here.
    def test_check_grad(self):
C
chengduo 已提交
205 206 207
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad(['x0'], 'Out', max_relative_error=0.15)
C
chengduo 已提交
208 209


C
chengduo 已提交
210 211 212 213 214 215
def create_test_sum_fp16_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestSumFp16Case(parent):
        def init_kernel_type(self):
            self.dtype = np.float16
C
chengduo 已提交
216

C
chengduo 已提交
217
        def test_w_is_selected_rows(self):
C
chengduo 已提交
218 219 220 221 222
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                for inplace in [True, False]:
                    self.check_with_place(place, inplace)

C
chengduo 已提交
223 224 225 226 227
    cls_name = "{0}_{1}".format(parent.__name__, "SumFp16Test")
    TestSumFp16Case.__name__ = cls_name
    globals()[cls_name] = TestSumFp16Case


228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
class API_Test_Elementwise_Sum(unittest.TestCase):
    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input0 = fluid.layers.fill_constant(
                shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(
                shape=[2, 3], dtype='int64', value=3)
            expected_result = np.empty((2, 3))
            expected_result.fill(8)
            sum_value = paddle.elementwise_sum([input0, input1])
            exe = fluid.Executor(fluid.CPUPlace())
            result = exe.run(fetch_list=[sum_value])

        self.assertEqual((result == expected_result).all(), True)


244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
class TestRaiseSumError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.sum([11, 22])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
            fluid.layers.sum([data1, data2])

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            fluid.layers.sum(data1)

        self.assertRaises(TypeError, test_dtype1)


class TestRaiseSumsError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.sums([11, 22])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2])

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            fluid.layers.sums(data1)

        self.assertRaises(TypeError, test_dtype1)

        def test_out_type():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            fluid.layers.sums([data1, data2], out=[10])

        self.assertRaises(TypeError, test_out_type)

        def test_out_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            out = fluid.data(name="out", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2], out=out)

        self.assertRaises(TypeError, test_out_dtype)


C
chengduo 已提交
301 302
create_test_sum_fp16_class(TestSelectedRowsSumOp)
create_test_sum_fp16_class(TestLoDTensorAndSelectedRowsOp)
C
chengduo 已提交
303

Q
qijun 已提交
304
if __name__ == "__main__":
305
    unittest.main()