math_op_patch.py 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .. import core
16
from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator, _in_legacy_dygraph, in_dygraph_mode
17
from ..layers.layer_function_generator import OpProtoHolder
18
from . import no_grad
J
Jiabin Yang 已提交
19
from .. import framework
20

21
import numpy as np
22
import warnings
23
from paddle import _C_ops, _legacy_C_ops
24

25 26 27 28 29 30
_supported_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
31
    core.VarDesc.VarType.BOOL,
32 33
]

34 35 36 37
# NOTE(chenweihang): We currently do not fully support the type promotion
# between tensors. Parting support here is because the interoperation of
# real and complex numbers in paddle quantum is very frequent, such as the
# binary operation between `float` and `complex64`, so we must support the
38 39 40 41 42 43 44 45 46 47
# correct type promotion on the APIs paddle quantum used.
# Now only check in dygraph (paddle quantum based dygraph)
# Full type promotion support will need to be fully verified later.
_supported_promote_complex_types_ = [
    '__add__',
    '__radd__',
    '__sub__',
    '__rsub__',
    '__mul__',
    '__rmul__',
48
    '__div__',
49
    '__truediv__',
50
    '__rdiv__',
51 52 53 54
    '__rtruediv__',
    '__matmul__',
]

55 56 57 58 59
_complex_dtypes = [
    core.VarDesc.VarType.COMPLEX64,
    core.VarDesc.VarType.COMPLEX128,
]

60
_already_patch_varbase = False
61
_already_patch_eager_tensor = False
62

63 64 65 66 67 68 69

def monkey_patch_math_varbase():
    """
    Similar to monkey_patch_variable.
    The difference is, in dygraph mode, use auto-generated op functions for better performance.
    """

70
    @no_grad
71
    def create_tensor(value, dtype, shape):
72
        if framework._in_eager_mode_:
73 74
            out = _C_ops.full(shape, value, dtype,
                              framework._current_expected_place())
75 76
        else:
            out = _varbase_creator(dtype=dtype)
77 78 79
            out = _legacy_C_ops.fill_constant(out, 'dtype', dtype, 'shape',
                                              shape, 'value', value,
                                              'force_cpu', False)
80 81
        out.stop_gradient = True
        return out
82 83 84 85 86 87 88

    def create_scalar(value, dtype):
        return create_tensor(value, dtype, shape=[1])

    def astype(self, dtype):
        """

89
        Cast a Tensor to a specified data type.
90 91

        Args:
92
            dtype: The target data type.
93 94

        Returns:
95
            Tensor: a new Tensor with target dtype
96 97 98 99

        Examples:
            .. code-block:: python

100
                import paddle
101 102
                import numpy as np

103 104 105 106
                original_tensor = paddle.ones([2, 2])
                print("original tensor's dtype is: {}".format(original_tensor.dtype))
                new_tensor = original_tensor.astype('float32')
                print("new tensor's dtype is: {}".format(new_tensor.dtype))
107 108

        """
109 110
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
111 112

        if _in_legacy_dygraph():
113 114 115
            return _legacy_C_ops.cast(self, 'in_dtype', self.dtype, 'out_dtype',
                                      dtype)
        return _C_ops.cast(self, dtype)
116 117

    def _scalar_elementwise_op_(var, scale, bias):
118
        if framework.in_dygraph_mode():
119 120
            return _C_ops.scale(var, float(scale), bias, True)
        return _legacy_C_ops.scale(var, 'scale', scale, 'bias', bias)
121

122 123 124
    def _neg_(var):
        return _scalar_elementwise_op_(var, -1.0, 0.0)

125 126 127 128 129 130 131 132 133 134 135 136
    def _float_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to float."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return float(var.numpy().flatten()[0])

    def _long_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to long."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
T
tianshuo78520a 已提交
137
        return int(var.numpy().flatten()[0])
138 139 140 141 142 143 144 145 146

    def _int_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to int."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return int(var.numpy().flatten()[0])

    def _len_(var):
S
Steffy-zxf 已提交
147 148 149 150 151 152
        if var.type == core.VarDesc.VarType.VOCAB:
            return len(var.value().get_map_tensor())
        elif var.type == core.VarDesc.VarType.STRINGS:
            return len(var.value().get_string_tensor())
        else:
            return var.shape[0]
153 154 155 156 157 158

    def _index_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to python index."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
T
tianshuo78520a 已提交
159
        return int(var.numpy().flatten()[0])
160

161 162 163 164
    @property
    def _ndim_(var):
        return len(var.shape)

165 166 167 168
    @property
    def _size_(var):
        return np.prod(var.shape)

169 170 171 172 173 174 175
    @property
    def _T_(var):
        if len(var.shape) == 1:
            return var
        perm = []
        for i in range(len(var.shape)):
            perm.insert(0, i)
176
        if _in_legacy_dygraph():
177
            out, _ = _legacy_C_ops.transpose2(var, 'axis', perm)
178
        else:
179
            out = _C_ops.transpose(var, perm)
180 181
        return out

182
    def _scalar_add_(var, value):
183 184
        return _scalar_elementwise_op_(var, 1.0, value)

185
    def _scalar_sub_(var, value):
186 187
        return _scalar_elementwise_op_(var, 1.0, -value)

188
    def _scalar_rsub_(var, value):
189 190
        return _scalar_elementwise_op_(var, -1.0, value)

191
    def _scalar_mul_(var, value):
192 193
        return _scalar_elementwise_op_(var, value, 0.0)

194 195 196
    def _scalar_div_(var, value):
        return _scalar_elementwise_op_(var, 1.0 / value, 0.0)

197 198 199 200
    # for binary operator such as elementwise, compare
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
201 202
                         scalar_method=None,
                         call_final_api=False):
203

204
        def __impl__(self, other_var):
205 206 207 208 209 210 211 212 213
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
214
                    return scalar_method(self, other_var)
215 216 217 218 219 220
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
221 222 223
                # the division result can only guarantee the numerical accuracy of 6 digits
                # after the decimal point. The result of numpy calculation is of float64 type,
                # so the calculation result here and the calculation result of numpy are
224 225
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
226
                if (op_type == "divide" or op_type == "elementwise_div"
227
                    ) and self.dtype in _supported_int_dtype_:
228 229
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
230
                # but only +, -, *, / can use this method
231 232 233 234 235
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
236

237
            # 2. create varbase for scalar
238
            lhs_dtype = self.dtype
J
Jiabin Yang 已提交
239
            if framework._in_eager_mode_:
240
                other_var_should_be = core.eager.Tensor
241 242 243
            else:
                other_var_should_be = core.VarBase
            if not isinstance(other_var, other_var_should_be):
244 245 246
                if isinstance(other_var, complex):
                    import paddle
                    other_var = paddle.to_tensor(other_var, dtype='complex64')
247
                else:
248
                    if reverse:
249 250 251
                        other_var = create_tensor(other_var,
                                                  dtype=lhs_dtype,
                                                  shape=self.shape)
252 253
                    else:
                        # add fill_op
254 255
                        other_var = create_scalar(value=other_var,
                                                  dtype=lhs_dtype)
256

257
            # 3. promote types or unify right var type to left var
258
            rhs_dtype = other_var.dtype
259
            if lhs_dtype != rhs_dtype:
260
                if method_name in _supported_promote_complex_types_ and (
261 262
                        lhs_dtype in _complex_dtypes
                        or rhs_dtype in _complex_dtypes):
263 264 265 266 267 268 269 270 271 272
                    # only when lhs_dtype or rhs_dtype is complex type,
                    # the dtype will promote, in other cases, directly
                    # use lhs_dtype, this is consistent will original rule
                    promote_dtype = core._promote_types_if_complex_exists(
                        lhs_dtype, rhs_dtype)
                    self = self if lhs_dtype == promote_dtype else astype(
                        self, promote_dtype)
                    other_var = other_var if rhs_dtype == promote_dtype else astype(
                        other_var, promote_dtype)
                else:
273
                    warnings.warn(
274 275
                        'The dtype of left and right variables are not the same, left dtype is {}, but right dtype is {}, the right dtype will convert to {}'
                        .format(lhs_dtype, rhs_dtype, lhs_dtype))
276 277
                    other_var = astype(other_var, lhs_dtype)

278 279 280 281 282
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

283
            if (op_type == "divide" or op_type == "elementwise_div"
284
                ) and self.dtype in _supported_int_dtype_:
285 286 287
                self = astype(self, 'float32')
                other_var = astype(other_var, 'float32')

288
            # 4. calculation
289
            axis = -1
290 291 292 293
            if in_dygraph_mode():
                math_op = getattr(_C_ops, op_type)
            else:
                math_op = getattr(_legacy_C_ops, op_type)
294
            if call_final_api:
295
                if op_type == "matmul":
296
                    return math_op(self, other_var, False, False)
297 298 299 300 301
                if op_type == "pow":
                    if isinstance(other_var, core.eager.Tensor):
                        return _C_ops.elementwise_pow(self, other_var)
                    else:
                        return _C_ops.elementwise_pow(self, other_var)
302 303
                return math_op(self, other_var, -1)
            return math_op(self, other_var, 'axis', axis)
304

305 306 307 308
        if call_final_api:
            comment = ""
        else:
            comment = OpProtoHolder.instance().get_op_proto(op_type).comment
309 310 311 312

        __impl__.__doc__ = """
        {0}
        Args:
313
            other_var(Tensor|float|int): right hand Tensor
314 315

        Returns:
316
            Tensor
317 318 319 320
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

321 322 323 324 325 326 327 328 329 330 331
    varbase_methods = [
        ('__neg__', _neg_),
        ('__float__', _float_),
        ('__long__', _long_),
        ('__int__', _int_),
        ('__len__', _len_),
        ('__index__', _index_),
        ('astype', astype),
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
332
        ('size', _size_),
333
        ('T', _T_),
334 335
        ('__add__',
         _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
336
        #  a+b == b+a. Do not need to reverse explicitly
337 338 339 340 341 342 343 344
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
        ('__sub__',
         _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_)),
        ('__rsub__',
         _binary_creator_('__rsub__', 'elementwise_sub', True, _scalar_rsub_)),
        ('__mul__',
         _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_)),
345
        ## a*b == b*a. Do not need to reverse explicitly
346 347 348 349 350 351 352
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
        ('__div__',
         _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_)),
        ('__truediv__',
         _binary_creator_('__truediv__', 'elementwise_div', False,
                          _scalar_div_)),
353 354
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
355 356
        ('__rtruediv__',
         _binary_creator_('rtruediv__', 'elementwise_div', True, None)),
357 358
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
359 360
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
361 362
        ('__floordiv__',
         _binary_creator_('__floordiv__', 'elementwise_floordiv', False, None)),
363 364 365 366
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
        ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False,
                                        None)),
367 368
        ## for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
369 370 371 372
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
373
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)),
374
        ('__array_ufunc__', None)
375 376
    ]

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    eager_methods = [
        ('__neg__', _neg_),
        ('__float__', _float_),
        ('__long__', _long_),
        ('__int__', _int_),
        ('__len__', _len_),
        ('__index__', _index_),
        ('astype', astype),
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
        ('size', _size_),
        ('T', _T_),
        ('__pow__', _binary_creator_('__pow__', 'pow', False, _C_ops.pow,
                                     True)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
        ('__floordiv__',
         _binary_creator_('__floordiv__', 'floor_divide', False, None, True)),
        ('__mod__', _binary_creator_('__mod__', 'remainder', False, None,
                                     True)),
        ('__matmul__',
         _binary_creator_('__matmul__', "matmul", False, None, True)),
        # for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None, True)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None, True)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None, True)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None, True)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None,
                                    True)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None,
                                    True)),
        ('__array_ufunc__', None)
    ]

    eager_cpp_level_patch = [
        "__add__",
        "__radd__",
        '__sub__',
        '__rsub__',
417 418
        '__mul__',
        '__rmul__',
419 420 421 422
        '__div__',
        '__truediv__',
        '__rdiv__',
        '__rtruediv__',
423 424
    ]

425
    global _already_patch_varbase
426 427
    global _already_patch_eager_tensor

J
Jiabin Yang 已提交
428
    if framework._in_eager_mode_:
429 430
        local_already_patch = _already_patch_eager_tensor
        _already_patch_eager_tensor = True
431
        local_tensor = core.eager.Tensor
432 433 434 435
    else:
        local_already_patch = _already_patch_varbase
        _already_patch_varbase = True
        local_tensor = core.VarBase
436

437
    if not local_already_patch:
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        if framework._in_eager_mode_:
            for method_name in eager_cpp_level_patch:
                method_impl = getattr(local_tensor, method_name, None)
                if method_impl:
                    setattr(local_tensor, method_name, method_impl)

            for method in eager_methods:
                method_name = method[0]
                method_impl = method[1]
                setattr(local_tensor, method_name, method_impl)

        else:
            for method in varbase_methods:
                method_name = method[0]
                method_impl = method[1]
                setattr(local_tensor, method_name, method_impl)
454 455
    else:
        import paddle.tensor
456
        # Tensor method from module paddle.tensor
457
        for method_name in paddle.tensor.tensor_method_func:
458
            if hasattr(local_tensor, method_name): continue
459
            method_impl = getattr(paddle.tensor, method_name, None)
460
            if method_impl: setattr(local_tensor, method_name, method_impl)
461

462 463
        for magic_method, origin_method in paddle.tensor.magic_method_func:
            impl = getattr(paddle.tensor, origin_method, None)
464
            if impl: setattr(local_tensor, magic_method, impl)