reshape_mkldnn_op.cc 18.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/flatten_op.h"
16 17 18
#include "paddle/fluid/operators/squeeze_op.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

19 20 21 22 23 24 25 26 27 28 29
namespace {
enum class ReshapeKernelOpName {
  reshape,
  reshape2,
  squeeze,
  squeeze2,
  flatten,
  flatten2,
};
}  // anonymous namespace

30 31 32 33
namespace paddle {
namespace operators {

using paddle::framework::LoDTensor;
34
using platform::to_void_cast;
35

J
jakpiase 已提交
36
static std::vector<int> extract_shape(
37
    const std::vector<const phi::DenseTensor*>& list_new_shape_tensor) {
J
jakpiase 已提交
38 39 40 41 42
  std::vector<int> vec_new_shape;
  vec_new_shape.reserve(list_new_shape_tensor.size());

  for (const auto& tensor : list_new_shape_tensor) {
    PADDLE_ENFORCE_EQ(
43 44
        tensor->dims(),
        phi::make_ddim({1}),
J
jakpiase 已提交
45 46 47 48 49 50 51 52 53 54 55
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
    vec_new_shape.emplace_back(*tensor->data<int32_t>());
  }

  return vec_new_shape;
}

56
template <typename T, ReshapeKernelOpName op_name>
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
class ReshapeMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    RunKernel(ctx);
  }

 private:
  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");

72 73
    framework::DDim x_dims, out_dims;
    InferInOutShape(ctx, x_dims, out_dims);
74

75
    auto x_vec_dims = phi::vectorize(x_dims);
76

77 78 79
    dnnl::memory::data_type x_type =
        framework::ToMKLDNNDataType(framework::TransToProtoVarType(x->dtype()));
    platform::ReorderMKLDNNHandler reorder_handler(
80 81 82
        x_vec_dims,
        framework::TransToProtoVarType(x->dtype()),
        x_type,
83
        onednn_engine);
84 85

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
J
Jacek Czaja 已提交
86
        x->mem_desc(), platform::to_void_cast(x->data<T>()));
87 88 89 90
    out->Resize(x_dims);  // to match x numel, format is changed later
    // reorder is done into a plain tag to allow usage with blocked formats
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
        out, getPlainFormatTag(x), ctx.GetPlace());
J
Jacek Czaja 已提交
91 92
    auto reorder_p = reorder_handler.AcquireReorder(reorder_dst_memory_p,
                                                    reorder_src_memory_p);
93 94 95 96 97 98 99

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);

    astream.wait();

    out->Resize(out_dims);
J
Jacek Czaja 已提交
100
    out->set_mem_desc(reorder_dst_memory_p->get_desc().reshape(phi::vectorize(out_dims)));
101 102
  }

103
  void InferInOutShape(const framework::ExecutionContext& ctx,
104 105
                       framework::DDim& x_dims,            // NOLINT
                       framework::DDim& out_dims) const {  // NOLINT
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    switch (op_name) {
      case ReshapeKernelOpName::reshape:
        InferShapeReshapeOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::reshape2:
        InferShapeReshape2Op(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::squeeze:
        InferShapeSqueezeOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::squeeze2:
        InferShapeSqueeze2Op(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::flatten:
        InferShapeFlattenOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::flatten2:
        InferShapeFlattenOp(ctx, x_dims, out_dims);
        break;
      default:
        PADDLE_THROW(paddle::platform::errors::OutOfRange(
            "Reshape kernel doesn not support that operator name"));
    }
  }

  void InferShapeReshapeOp(const framework::ExecutionContext& ctx,
132 133
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
134 135 136 137 138 139 140 141
    auto* x = ctx.Input<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");
    x_dims = x->dims();
    out_dims = out->dims();
    ChangeReshapeOutDimsIfNeeded(ctx, x_dims, out_dims);
  }

  void InferShapeReshape2Op(const framework::ExecutionContext& ctx,
142 143
                            framework::DDim& x_dims,            // NOLINT
                            framework::DDim& out_dims) const {  // NOLINT
144 145 146
    auto* out = ctx.Output<LoDTensor>("Out");
    auto* xshape = ctx.Output<LoDTensor>("XShape");
    auto xshape_dims = xshape->dims();
147
    x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
148 149 150 151 152 153
    out_dims = out->dims();
    ChangeReshapeOutDimsIfNeeded(ctx, x_dims, out_dims);
  }

  // in reshape1/2 ops  "ShapeTensor" has highest priority and "Shape" has
  // second highest priority
154 155 156 157
  void ChangeReshapeOutDimsIfNeeded(
      const framework::ExecutionContext& ctx,
      framework::DDim& x_dims,            // NOLINT
      framework::DDim& out_dims) const {  // NOLINT
158 159
    auto list_new_shape_tensor =
        ctx.MultiInput<phi::DenseTensor>("ShapeTensor");
160 161 162 163 164 165 166 167 168 169 170 171 172 173
    if (list_new_shape_tensor.size() > 0) {
      auto new_shape = extract_shape(list_new_shape_tensor);
      out_dims = ValidateShape(new_shape, x_dims);
    } else if (ctx.HasInput("Shape")) {
      auto* shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
      auto* shape_data = shape_tensor->data<int>();

      auto shape =
          std::vector<int>(shape_data, shape_data + shape_tensor->numel());
      out_dims = ValidateShape(shape, x_dims);
    }
  }

  void InferShapeSqueezeOp(const framework::ExecutionContext& ctx,
174 175
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
176 177 178 179 180 181 182
    auto* x = ctx.Input<LoDTensor>("X");
    x_dims = x->dims();
    const auto& axes = ctx.Attr<std::vector<int>>("axes");
    out_dims = GetOutputShape(axes, x_dims, true);
  }

  void InferShapeSqueeze2Op(const framework::ExecutionContext& ctx,
183 184
                            framework::DDim& x_dims,            // NOLINT
                            framework::DDim& out_dims) const {  // NOLINT
185 186 187
    auto* out = ctx.Output<LoDTensor>("Out");
    auto* xshape = ctx.Output<LoDTensor>("XShape");
    auto xshape_dims = xshape->dims();
188
    x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
189 190 191 192
    out_dims = out->dims();
  }

  void InferShapeFlattenOp(const framework::ExecutionContext& ctx,
193 194
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
195 196 197
    auto x = ctx.Input<LoDTensor>("X");
    x_dims = x->dims();
    auto axes = ctx.Attr<int>("axis");
198
    out_dims = phi::make_ddim(
L
Leo Chen 已提交
199
        FlattenKernel<phi::CPUContext, float>::GetOutputShape(axes, x_dims));
200 201
  }

202
 protected:
203 204
  static dnnl::memory::format_tag getPlainFormatTag(
      const phi::DenseTensor* tensor) {
205 206
    auto tensor_dims_size = tensor->dims().size();
    PADDLE_ENFORCE_EQ(
207 208
        tensor_dims_size <= 6 && tensor_dims_size >= 1,
        true,
209 210 211 212 213
        platform::errors::InvalidArgument(
            "Dims for squeeze_grad oneDNN op must be in range <1, 6>"));

    switch (tensor_dims_size) {
      case 1:
214
        return dnnl::memory::format_tag::a;
215
      case 2:
216
        return dnnl::memory::format_tag::ab;
217
      case 3:
218
        return dnnl::memory::format_tag::abc;
219
      case 4:
220
        return dnnl::memory::format_tag::abcd;
221
      case 5:
222
        return dnnl::memory::format_tag::abcde;
223
      default:
224
        return dnnl::memory::format_tag::abcdef;
225 226 227 228 229
    }
  }

  static framework::DDim ValidateShape(const std::vector<int>& shape,
                                       const framework::DDim& in_dims) {
230 231
    const int64_t in_size = phi::product(in_dims);
    auto in_dims_vec = phi::vectorize(in_dims);
232 233
    bool all_positive = std::all_of(in_dims_vec.cbegin(),
                                    in_dims_vec.cend(),
234 235 236 237 238 239 240 241 242 243 244 245
                                    [](int64_t i) { return i > 0; });
    // only one dimension can be set to -1, whose size will be automatically
    // infered
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
        PADDLE_ENFORCE_EQ(
246 247
            unk_dim_idx,
            -1,
248 249 250
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
251 252
                phi::make_ddim(shape),
                i));
253 254 255
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
        PADDLE_ENFORCE_LT(
256 257
            static_cast<int>(i),
            in_dims.size(),
258 259 260 261 262
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
263 264 265 266
                phi::make_ddim(shape),
                i,
                in_dims,
                in_dims.size()));
267 268
      } else {
        PADDLE_ENFORCE_GT(
269 270
            shape[i],
            0,
271 272 273 274
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
                "be negative except one unknown dimension. "
                "But received  shape = [%s], shape[%d] = %d.",
275 276 277
                phi::make_ddim(shape),
                i,
                shape[i]));
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
      if (all_positive) {
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
        PADDLE_ENFORCE_EQ(
293 294
            output_shape[unk_dim_idx] * capacity,
            -in_size,
295 296 297 298 299 300
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
                "'shape' is [%s], known capacity of 'shape' is %d.",
301 302 303 304
                in_dims,
                in_size,
                phi::make_ddim(shape),
                capacity));
305 306 307 308 309 310
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
311 312
            capacity,
            in_size,
313 314 315 316 317 318
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
319 320 321 322
                in_dims,
                in_size,
                phi::make_ddim(shape),
                capacity));
323 324
      }
    }
325
    return phi::make_ddim(output_shape);
326 327 328
  }
};

329 330
template <typename T, ReshapeKernelOpName op_name>
class ReshapeGradMKLDNNKernel : public ReshapeMKLDNNKernel<T, op_name> {
331 332 333 334 335 336 337 338 339 340 341 342 343 344
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    RunKernel(ctx);
  }

 private:
  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* dout = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));

345 346 347
    framework::DDim dx_dims;
    InferOutputShapeInGrad(ctx, dx_dims);

348
    auto dout_vec_dims = phi::vectorize(dout->dims());
349

350 351 352
    dnnl::memory::data_type dout_type = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(dout->dtype()));
    platform::ReorderMKLDNNHandler reorder_handler(
353 354 355
        dout_vec_dims,
        framework::TransToProtoVarType(dout->dtype()),
        dout_type,
356
        onednn_engine);
357 358

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
J
Jacek Czaja 已提交
359
        dout->mem_desc(), platform::to_void_cast(dout->data<T>()));
360 361
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
        dx, this->getPlainFormatTag(dout), ctx.GetPlace());
J
Jacek Czaja 已提交
362 363
    auto reorder_p = reorder_handler.AcquireReorder(reorder_dst_memory_p,
                                                    reorder_src_memory_p);
364 365 366 367 368

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
    astream.wait();

369
    dx->Resize(dx_dims);
J
Jacek Czaja 已提交
370
    dx->set_mem_desc(reorder_dst_memory_p->get_desc().reshape(phi::vectorize(dx_dims)));
371 372
  }

373
  void InferOutputShapeInGrad(const framework::ExecutionContext& ctx,
374
                              framework::DDim& x_dims) const {  // NOLINT
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    switch (op_name) {
      case ReshapeKernelOpName::reshape:
        InferShapeReshapeSqueezeGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::reshape2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::squeeze:
        InferShapeReshapeSqueezeGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::squeeze2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::flatten:
        InferShapeFlattenGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::flatten2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      default:
        PADDLE_THROW(paddle::platform::errors::OutOfRange(
            "Reshape grad kernel doesn not support that operator name"));
    }
  }
399

400 401 402
  void InferShapeReshapeSqueezeGradOp(
      const framework::ExecutionContext& ctx,
      framework::DDim& dx_dims) const {  // NOLINT
403 404 405
    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    dx_dims = dx->dims();
  }
406

407
  void InferShapeReshape2Squeeze2Flatten2GradOp(
408 409
      const framework::ExecutionContext& ctx,
      framework::DDim& dx_dims) const {  // NOLINT
410
    auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
411
    dx_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
412
  }
413

414
  void InferShapeFlattenGradOp(const framework::ExecutionContext& ctx,
415
                               framework::DDim& dx_dims) const {  // NOLINT
416 417 418 419 420
    dx_dims = ctx.Input<LoDTensor>("X")->dims();
  }
};
}  // namespace operators
}  // namespace paddle
421

422 423
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(
424 425 426
    squeeze,
    MKLDNN,
    paddle::platform::CPUPlace,
427 428 429 430 431
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::squeeze>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::squeeze>);

REGISTER_OP_KERNEL(
432 433 434
    squeeze_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
435 436 437 438 439
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::squeeze>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::squeeze>);

REGISTER_OP_KERNEL(
440 441 442
    squeeze2,
    MKLDNN,
    paddle::platform::CPUPlace,
443 444 445 446 447
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::squeeze2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::squeeze2>);

REGISTER_OP_KERNEL(
448 449 450
    squeeze2_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
451 452 453 454 455
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::squeeze2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::squeeze2>);

REGISTER_OP_KERNEL(
456 457 458
    reshape,
    MKLDNN,
    paddle::platform::CPUPlace,
459 460 461 462 463
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::reshape>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::reshape>);

REGISTER_OP_KERNEL(
464 465 466
    reshape_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
467 468 469 470 471
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::reshape>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::reshape>);

REGISTER_OP_KERNEL(
472 473 474
    reshape2,
    MKLDNN,
    paddle::platform::CPUPlace,
475 476 477 478 479
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::reshape2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::reshape2>);

REGISTER_OP_KERNEL(
480 481 482
    reshape2_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
483 484 485 486 487
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::reshape2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::reshape2>);

REGISTER_OP_KERNEL(
488 489 490
    flatten,
    MKLDNN,
    paddle::platform::CPUPlace,
491 492 493 494 495
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::flatten>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::flatten>);

REGISTER_OP_KERNEL(
496 497 498
    flatten_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
499 500 501 502 503
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::flatten>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::flatten>);

REGISTER_OP_KERNEL(
504 505 506
    flatten2,
    MKLDNN,
    paddle::platform::CPUPlace,
507 508 509 510 511
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::flatten2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::flatten2>);

REGISTER_OP_KERNEL(
512 513 514
    flatten2_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
515 516 517
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::flatten2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::flatten2>);