test_diag_v2.py 10.1 KB
Newer Older
L
LutaoChu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

L
LutaoChu 已提交
17
import numpy as np
W
wanghuancoder 已提交
18
from eager_op_test import OpTest
19

L
LutaoChu 已提交
20 21 22 23 24 25 26 27
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


class TestDiagV2Op(OpTest):
    def setUp(self):
        self.op_type = "diag_v2"
H
hong 已提交
28
        self.python_api = paddle.diag
L
LutaoChu 已提交
29 30 31 32 33 34 35 36 37
        self.x = np.random.rand(10, 10)
        self.offset = 0
        self.padding_value = 0.0
        self.out = np.diag(self.x, self.offset)

        self.init_config()
        self.inputs = {'X': self.x}
        self.attrs = {
            'offset': self.offset,
38
            'padding_value': self.padding_value,
L
LutaoChu 已提交
39 40 41 42 43
        }
        self.outputs = {'Out': self.out}

    def test_check_output(self):
        paddle.enable_static()
W
wanghuancoder 已提交
44
        self.check_output()
L
LutaoChu 已提交
45

46 47
    def test_check_grad(self):
        paddle.enable_static()
W
wanghuancoder 已提交
48
        self.check_grad(['X'], 'Out')
49

L
LutaoChu 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    def init_config(self):
        pass


class TestDiagV2OpCase1(TestDiagV2Op):
    def init_config(self):
        self.offset = 1
        self.out = np.diag(self.x, self.offset)


class TestDiagV2OpCase2(TestDiagV2Op):
    def init_config(self):
        self.offset = -1
        self.out = np.diag(self.x, self.offset)


class TestDiagV2OpCase3(TestDiagV2Op):
    def init_config(self):
68
        self.x = np.random.randint(-10, 10, size=(10, 10)).astype("float64")
L
LutaoChu 已提交
69 70 71 72 73 74
        self.out = np.diag(self.x, self.offset)


class TestDiagV2OpCase4(TestDiagV2Op):
    def init_config(self):
        self.x = np.random.rand(100)
75
        self.padding_value = 2
L
LutaoChu 已提交
76
        n = self.x.size
77 78 79 80 81
        self.out = (
            self.padding_value * np.ones((n, n))
            + np.diag(self.x, self.offset)
            - np.diag(self.padding_value * np.ones(n))
        )
L
LutaoChu 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114


class TestDiagV2Error(unittest.TestCase):
    def test_errors(self):
        paddle.enable_static()
        with program_guard(Program(), Program()):

            def test_diag_v2_type():
                x = [1, 2, 3]
                output = paddle.diag(x)

            self.assertRaises(TypeError, test_diag_v2_type)

            x = paddle.static.data('data', [3, 3])
            self.assertRaises(TypeError, paddle.diag, x, offset=2.5)

            self.assertRaises(TypeError, paddle.diag, x, padding_value=[9])

            x = paddle.static.data('data2', [3, 3, 3])
            self.assertRaises(ValueError, paddle.diag, x)


class TestDiagV2API(unittest.TestCase):
    def setUp(self):
        self.input_np = np.random.random(size=(10, 10)).astype(np.float32)
        self.expected0 = np.diag(self.input_np)
        self.expected1 = np.diag(self.input_np, k=1)
        self.expected2 = np.diag(self.input_np, k=-1)

        self.input_np2 = np.random.rand(100)
        self.offset = 0
        self.padding_value = 8
        n = self.input_np2.size
115 116 117 118 119
        self.expected3 = (
            self.padding_value * np.ones((n, n))
            + np.diag(self.input_np2, self.offset)
            - np.diag(self.padding_value * np.ones(n))
        )
L
LutaoChu 已提交
120 121 122 123

        self.input_np3 = np.random.randint(-10, 10, size=(100)).astype(np.int64)
        self.padding_value = 8.0
        n = self.input_np3.size
124 125 126 127 128
        self.expected4 = (
            self.padding_value * np.ones((n, n))
            + np.diag(self.input_np3, self.offset)
            - np.diag(self.padding_value * np.ones(n))
        )
L
LutaoChu 已提交
129 130

        self.padding_value = -8
131 132 133 134 135
        self.expected5 = (
            self.padding_value * np.ones((n, n))
            + np.diag(self.input_np3, self.offset)
            - np.diag(self.padding_value * np.ones(n))
        )
L
LutaoChu 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

        self.input_np4 = np.random.random(size=(2000, 2000)).astype(np.float32)
        self.expected6 = np.diag(self.input_np4)
        self.expected7 = np.diag(self.input_np4, k=1)
        self.expected8 = np.diag(self.input_np4, k=-1)

        self.input_np5 = np.random.random(size=(2000)).astype(np.float32)
        self.expected9 = np.diag(self.input_np5)
        self.expected10 = np.diag(self.input_np5, k=1)
        self.expected11 = np.diag(self.input_np5, k=-1)

        self.input_np6 = np.random.random(size=(2000, 1500)).astype(np.float32)
        self.expected12 = np.diag(self.input_np6, k=-1)

    def run_imperative(self):
        x = paddle.to_tensor(self.input_np)
        y = paddle.diag(x)
153
        np.testing.assert_allclose(y.numpy(), self.expected0, rtol=1e-05)
L
LutaoChu 已提交
154 155

        y = paddle.diag(x, offset=1)
156
        np.testing.assert_allclose(y.numpy(), self.expected1, rtol=1e-05)
L
LutaoChu 已提交
157 158

        y = paddle.diag(x, offset=-1)
159
        np.testing.assert_allclose(y.numpy(), self.expected2, rtol=1e-05)
L
LutaoChu 已提交
160 161 162

        x = paddle.to_tensor(self.input_np2)
        y = paddle.diag(x, padding_value=8)
163
        np.testing.assert_allclose(y.numpy(), self.expected3, rtol=1e-05)
L
LutaoChu 已提交
164 165 166

        x = paddle.to_tensor(self.input_np3)
        y = paddle.diag(x, padding_value=8.0)
167
        np.testing.assert_allclose(y.numpy(), self.expected4, rtol=1e-05)
L
LutaoChu 已提交
168 169

        y = paddle.diag(x, padding_value=-8)
170
        np.testing.assert_allclose(y.numpy(), self.expected5, rtol=1e-05)
L
LutaoChu 已提交
171 172 173

        x = paddle.to_tensor(self.input_np4)
        y = paddle.diag(x)
174
        np.testing.assert_allclose(y.numpy(), self.expected6, rtol=1e-05)
L
LutaoChu 已提交
175 176

        y = paddle.diag(x, offset=1)
177
        np.testing.assert_allclose(y.numpy(), self.expected7, rtol=1e-05)
L
LutaoChu 已提交
178 179

        y = paddle.diag(x, offset=-1)
180
        np.testing.assert_allclose(y.numpy(), self.expected8, rtol=1e-05)
L
LutaoChu 已提交
181 182 183

        x = paddle.to_tensor(self.input_np5)
        y = paddle.diag(x)
184
        np.testing.assert_allclose(y.numpy(), self.expected9, rtol=1e-05)
L
LutaoChu 已提交
185 186

        y = paddle.diag(x, offset=1)
187
        np.testing.assert_allclose(y.numpy(), self.expected10, rtol=1e-05)
L
LutaoChu 已提交
188 189

        y = paddle.diag(x, offset=-1)
190
        np.testing.assert_allclose(y.numpy(), self.expected11, rtol=1e-05)
L
LutaoChu 已提交
191 192 193

        x = paddle.to_tensor(self.input_np6)
        y = paddle.diag(x, offset=-1)
194
        np.testing.assert_allclose(y.numpy(), self.expected12, rtol=1e-05)
L
LutaoChu 已提交
195 196 197 198 199

    def run_static(self, use_gpu=False):
        x = paddle.static.data(name='input', shape=[10, 10], dtype='float32')
        x2 = paddle.static.data(name='input2', shape=[100], dtype='float64')
        x3 = paddle.static.data(name='input3', shape=[100], dtype='int64')
200 201 202
        x4 = paddle.static.data(
            name='input4', shape=[2000, 2000], dtype='float32'
        )
L
LutaoChu 已提交
203
        x5 = paddle.static.data(name='input5', shape=[2000], dtype='float32')
204 205 206
        x6 = paddle.static.data(
            name='input6', shape=[2000, 1500], dtype='float32'
        )
L
LutaoChu 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        result0 = paddle.diag(x)
        result1 = paddle.diag(x, offset=1)
        result2 = paddle.diag(x, offset=-1)
        result3 = paddle.diag(x, name='aaa')
        result4 = paddle.diag(x2, padding_value=8)
        result5 = paddle.diag(x3, padding_value=8.0)
        result6 = paddle.diag(x3, padding_value=-8)
        result7 = paddle.diag(x4)
        result8 = paddle.diag(x4, offset=1)
        result9 = paddle.diag(x4, offset=-1)
        result10 = paddle.diag(x5)
        result11 = paddle.diag(x5, offset=1)
        result12 = paddle.diag(x5, offset=-1)
        result13 = paddle.diag(x6, offset=-1)

        place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        (
            res0,
            res1,
            res2,
            res4,
            res5,
            res6,
            res7,
            res8,
            res9,
            res10,
            res11,
            res12,
            res13,
        ) = exe.run(
L
LutaoChu 已提交
240 241 242 243 244 245
            feed={
                "input": self.input_np,
                "input2": self.input_np2,
                'input3': self.input_np3,
                'input4': self.input_np4,
                'input5': self.input_np5,
246
                'input6': self.input_np6,
L
LutaoChu 已提交
247 248
            },
            fetch_list=[
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
                result0,
                result1,
                result2,
                result4,
                result5,
                result6,
                result7,
                result8,
                result9,
                result10,
                result11,
                result12,
                result13,
            ],
        )
L
LutaoChu 已提交
264

265 266 267
        np.testing.assert_allclose(res0, self.expected0, rtol=1e-05)
        np.testing.assert_allclose(res1, self.expected1, rtol=1e-05)
        np.testing.assert_allclose(res2, self.expected2, rtol=1e-05)
L
LutaoChu 已提交
268
        self.assertTrue('aaa' in result3.name)
269 270 271 272 273 274 275 276 277 278
        np.testing.assert_allclose(res4, self.expected3, rtol=1e-05)
        np.testing.assert_allclose(res5, self.expected4, rtol=1e-05)
        np.testing.assert_allclose(res6, self.expected5, rtol=1e-05)
        np.testing.assert_allclose(res7, self.expected6, rtol=1e-05)
        np.testing.assert_allclose(res8, self.expected7, rtol=1e-05)
        np.testing.assert_allclose(res9, self.expected8, rtol=1e-05)
        np.testing.assert_allclose(res10, self.expected9, rtol=1e-05)
        np.testing.assert_allclose(res11, self.expected10, rtol=1e-05)
        np.testing.assert_allclose(res12, self.expected11, rtol=1e-05)
        np.testing.assert_allclose(res13, self.expected12, rtol=1e-05)
L
LutaoChu 已提交
279 280 281 282

    def test_cpu(self):
        paddle.disable_static(place=paddle.fluid.CPUPlace())
        self.run_imperative()
283

L
LutaoChu 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        paddle.enable_static()

        with fluid.program_guard(fluid.Program()):
            self.run_static()

    def test_gpu(self):
        if not fluid.core.is_compiled_with_cuda():
            return

        paddle.disable_static(place=paddle.fluid.CUDAPlace(0))
        self.run_imperative()
        paddle.enable_static()

        with fluid.program_guard(fluid.Program()):
            self.run_static(use_gpu=True)


if __name__ == "__main__":
H
hong 已提交
302
    paddle.enable_static()
L
LutaoChu 已提交
303
    unittest.main()