vol2col_test.cc 8.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/vol2col.h"
W
wanghuancoder 已提交
16

C
chengduoZH 已提交
17
#include <gtest/gtest.h>
18

W
Wilber 已提交
19 20
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
C
chengduoZH 已提交
21

Q
QI JUN 已提交
22
template <typename DeviceContext, typename Place>
C
chengduoZH 已提交
23 24
void testVol2col() {
  paddle::framework::Tensor input;
C
chengduoZH 已提交
25 26
  paddle::framework::Tensor input_tmp;
  paddle::framework::Tensor output;
C
chengduoZH 已提交
27 28 29
  paddle::framework::Tensor output_tmp;

  auto* place = new Place();
Q
QI JUN 已提交
30
  DeviceContext* context = new DeviceContext(*place);
C
chengduoZH 已提交
31 32 33 34 35 36
  /**
   * input = [[0, 1, 2,
   *          3, 4, 5]
   *          [6, 7, 8,
   *          9, 10, 11]]
   *
C
chengduoZH 已提交
37 38 39 40 41 42 43 44
   * output = [0, 1
   *           1, 2
   *           3, 4
   *           4, 5
   *           6, 7
   *           7, 8
   *           9, 10
   *           10, 11]
C
chengduoZH 已提交
45 46 47 48 49 50 51 52 53 54 55
   *
   * col2vol = [[0, 2, 2,
   *             3, 8, 5]
   *            [6, 14, 8,
   *             9, 20, 11]]
   *
   */
  int input_depth = 2;
  int input_height = 2;
  int input_width = 3;
  int filter_size = 2;
C
chengduoZH 已提交
56 57 58 59 60 61 62 63 64
  std::vector<int> strides({1, 1, 1});
  std::vector<int> paddings({0, 0, 0});
  std::vector<int> dilations({1, 1, 1});
  int output_depth =
      (input_depth - filter_size + 2 * paddings[0]) / strides[0] + 1;
  int output_height =
      (input_height - filter_size + 2 * paddings[1]) / strides[1] + 1;
  int output_width =
      (input_width - filter_size + 2 * paddings[2]) / strides[2] + 1;
C
chengduoZH 已提交
65 66 67 68 69 70 71 72 73 74 75

  // Vol2Col test
  float* input_ptr =
      input_tmp.mutable_data<float>({1, input_depth, input_height, input_width},
                                    paddle::platform::CPUPlace());
  float arr[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input_ptr, arr, 12 * sizeof(float));

  if (paddle::platform::is_cpu_place(*place)) {
    input = input_tmp;
  } else {
F
fengjiayi 已提交
76
    paddle::framework::TensorCopySync(input_tmp, *place, &input);
C
chengduoZH 已提交
77
  }
78 79 80 81 82 83 84
  output.mutable_data<float>({1,
                              filter_size,
                              filter_size,
                              filter_size,
                              output_depth,
                              output_height,
                              output_width},
C
chengduoZH 已提交
85
                             *place);
C
chengduoZH 已提交
86

Q
QI JUN 已提交
87
  paddle::operators::math::Vol2ColFunctor<DeviceContext, float> vol2col;
C
chengduoZH 已提交
88
  vol2col(*context, input, dilations, strides, paddings, &output);
C
chengduoZH 已提交
89

C
chengduoZH 已提交
90
  float vol_2_col[] = {0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11};
C
chengduoZH 已提交
91 92
  float* out_cfo_ptr;
  if (paddle::platform::is_cpu_place(*place)) {
C
chengduoZH 已提交
93
    out_cfo_ptr = output.data<float>();
C
chengduoZH 已提交
94
  } else {
95 96
    paddle::framework::TensorCopySync(
        output, paddle::platform::CPUPlace(), &output_tmp);
C
chengduoZH 已提交
97 98 99
    out_cfo_ptr = output_tmp.data<float>();
  }

C
chengduoZH 已提交
100 101 102
  for (int i = 0; i < 16; ++i) {
    EXPECT_EQ(out_cfo_ptr[i], vol_2_col[i]);
  }
C
chengduoZH 已提交
103 104

  // Col2Vol test
C
chengduoZH 已提交
105
  float col_2_vol[] = {0, 2, 2, 3, 8, 5, 6, 14, 8, 9, 20, 11};
C
chengduoZH 已提交
106 107 108 109
  memset(input_ptr, 0, 12 * sizeof(float));
  if (paddle::platform::is_cpu_place(*place)) {
    input = input_tmp;
  } else {
110
    paddle::framework::TensorCopySync(input_tmp, *place, &input);
C
chengduoZH 已提交
111 112
  }

Q
QI JUN 已提交
113
  paddle::operators::math::Col2VolFunctor<DeviceContext, float> col2vol;
C
chengduoZH 已提交
114
  col2vol(*context, output, dilations, strides, paddings, &input);
C
chengduoZH 已提交
115

C
chengduoZH 已提交
116
  float* in_ptr;
C
chengduoZH 已提交
117
  if (paddle::platform::is_cpu_place(*place)) {
C
chengduoZH 已提交
118
    in_ptr = input.data<float>();
C
chengduoZH 已提交
119
  } else {
120 121
    paddle::framework::TensorCopySync(
        input, paddle::platform::CPUPlace(), &input_tmp);
C
chengduoZH 已提交
122
    in_ptr = input_tmp.data<float>();
C
chengduoZH 已提交
123 124
  }

C
chengduoZH 已提交
125
  for (int i = 0; i < 12; ++i) {
C
chengduoZH 已提交
126
    EXPECT_EQ(in_ptr[i], col_2_vol[i]);
C
chengduoZH 已提交
127
  }
128 129 130

  delete place;
  delete context;
C
chengduoZH 已提交
131 132
}

W
Wilber 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
template <>
void testVol2col<paddle::platform::CUDADeviceContext,
                 paddle::platform::CUDAPlace>() {
  paddle::framework::Tensor input;
  paddle::framework::Tensor input_tmp;
  paddle::framework::Tensor output;
  paddle::framework::Tensor output_tmp;

  auto* place = new paddle::platform::CUDAPlace();
  auto* context = new paddle::platform::CUDADeviceContext(*place);
  context->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(*place, context->stream())
                            .get());
  context->PartialInitWithAllocator();

  /**
   * input = [[0, 1, 2,
   *          3, 4, 5]
   *          [6, 7, 8,
   *          9, 10, 11]]
   *
   * output = [0, 1
   *           1, 2
   *           3, 4
   *           4, 5
   *           6, 7
   *           7, 8
   *           9, 10
   *           10, 11]
   *
   * col2vol = [[0, 2, 2,
   *             3, 8, 5]
   *            [6, 14, 8,
   *             9, 20, 11]]
   *
   */
  int input_depth = 2;
  int input_height = 2;
  int input_width = 3;
  int filter_size = 2;
  std::vector<int> strides({1, 1, 1});
  std::vector<int> paddings({0, 0, 0});
  std::vector<int> dilations({1, 1, 1});
  int output_depth =
      (input_depth - filter_size + 2 * paddings[0]) / strides[0] + 1;
  int output_height =
      (input_height - filter_size + 2 * paddings[1]) / strides[1] + 1;
  int output_width =
      (input_width - filter_size + 2 * paddings[2]) / strides[2] + 1;

  // Vol2Col test
  float* input_ptr =
      input_tmp.mutable_data<float>({1, input_depth, input_height, input_width},
                                    paddle::platform::CPUPlace());
  float arr[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input_ptr, arr, 12 * sizeof(float));

  if (paddle::platform::is_cpu_place(*place)) {
    input = input_tmp;
  } else {
    paddle::framework::TensorCopySync(input_tmp, *place, &input);
  }
196 197 198 199 200 201 202
  output.mutable_data<float>({1,
                              filter_size,
                              filter_size,
                              filter_size,
                              output_depth,
                              output_height,
                              output_width},
W
Wilber 已提交
203 204 205 206 207 208 209 210 211 212 213 214
                             *place);

  paddle::operators::math::Vol2ColFunctor<paddle::platform::CUDADeviceContext,
                                          float>
      vol2col;
  vol2col(*context, input, dilations, strides, paddings, &output);

  float vol_2_col[] = {0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11};
  float* out_cfo_ptr;
  if (paddle::platform::is_cpu_place(*place)) {
    out_cfo_ptr = output.data<float>();
  } else {
215 216
    paddle::framework::TensorCopySync(
        output, paddle::platform::CPUPlace(), &output_tmp);
W
Wilber 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    out_cfo_ptr = output_tmp.data<float>();
  }

  for (int i = 0; i < 16; ++i) {
    EXPECT_EQ(out_cfo_ptr[i], vol_2_col[i]);
  }

  // Col2Vol test
  float col_2_vol[] = {0, 2, 2, 3, 8, 5, 6, 14, 8, 9, 20, 11};
  memset(input_ptr, 0, 12 * sizeof(float));
  if (paddle::platform::is_cpu_place(*place)) {
    input = input_tmp;
  } else {
    paddle::framework::TensorCopySync(input_tmp, *place, &input);
  }

  paddle::operators::math::Col2VolFunctor<paddle::platform::CUDADeviceContext,
                                          float>
      col2vol;
  col2vol(*context, output, dilations, strides, paddings, &input);

  float* in_ptr;
  if (paddle::platform::is_cpu_place(*place)) {
    in_ptr = input.data<float>();
  } else {
242 243
    paddle::framework::TensorCopySync(
        input, paddle::platform::CPUPlace(), &input_tmp);
W
Wilber 已提交
244 245 246 247 248 249 250 251 252 253 254 255
    in_ptr = input_tmp.data<float>();
  }

  for (int i = 0; i < 12; ++i) {
    EXPECT_EQ(in_ptr[i], col_2_vol[i]);
  }

  delete place;
  delete context;
}
#endif

C
chengduoZH 已提交
256
TEST(math, vol2col) {
L
Leo Chen 已提交
257
  testVol2col<phi::CPUContext, paddle::platform::CPUPlace>();
258
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
QI JUN 已提交
259
  testVol2col<paddle::platform::CUDADeviceContext,
D
dzhwinter 已提交
260
              paddle::platform::CUDAPlace>();
C
chengduoZH 已提交
261
#endif  // PADDLE_WITH_CUDA
C
chengduoZH 已提交
262
}