fleet_wrapper.cc 20.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
30
#include <algorithm>
X
xujiaqi01 已提交
31
#include <utility>
32
#include "paddle/fluid/framework/data_feed.h"
33
#include "paddle/fluid/framework/op_registry.h"
34
#include "paddle/fluid/framework/scope.h"
35 36 37 38 39 40

namespace paddle {
namespace framework {

const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;
std::shared_ptr<FleetWrapper> FleetWrapper::s_instance_ = NULL;
41 42
bool FleetWrapper::is_initialized_ = false;

43
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
44 45 46
template <class AR>
paddle::ps::Archive<AR>& operator<<(paddle::ps::Archive<AR>& ar,
                                    const MultiSlotType& ins) {
47 48 49 50
  ar << ins.GetType();
  ar << ins.GetOffset();
  ar << ins.GetFloatData();
  ar << ins.GetUint64Data();
X
xujiaqi01 已提交
51
  return ar;
52 53
}

D
dongdaxiang 已提交
54 55 56
template <class AR>
paddle::ps::Archive<AR>& operator>>(paddle::ps::Archive<AR>& ar,
                                    MultiSlotType& ins) {
57 58 59 60
  ar >> ins.MutableType();
  ar >> ins.MutableOffset();
  ar >> ins.MutableFloatData();
  ar >> ins.MutableUint64Data();
X
xujiaqi01 已提交
61
  return ar;
62 63 64
}
#endif

65 66 67
#ifdef PADDLE_WITH_PSLIB
std::shared_ptr<paddle::distributed::PSlib> FleetWrapper::pslib_ptr_ = NULL;
#endif
68 69 70 71

void FleetWrapper::InitServer(const std::string& dist_desc, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
72
    VLOG(3) << "Going to init server";
73 74 75 76 77
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_server(dist_desc, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
78
    VLOG(3) << "Server can be initialized only once";
79 80 81 82 83 84 85 86 87
  }
#endif
}

void FleetWrapper::InitWorker(const std::string& dist_desc,
                              const std::vector<uint64_t>& host_sign_list,
                              int node_num, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
88
    VLOG(3) << "Going to init worker";
89 90 91 92 93 94 95
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_worker(dist_desc,
                            const_cast<uint64_t*>(host_sign_list.data()),
                            node_num, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
96
    VLOG(3) << "Worker can be initialized only once";
97 98 99 100 101 102
  }
#endif
}

void FleetWrapper::StopServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
103
  VLOG(3) << "Going to stop server";
104 105 106 107 108 109
  pslib_ptr_->stop_server();
#endif
}

uint64_t FleetWrapper::RunServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
110
  VLOG(3) << "Going to run server";
111 112 113 114 115 116 117 118 119
  return pslib_ptr_->run_server();
#else
  return 0;
#endif
}

void FleetWrapper::GatherServers(const std::vector<uint64_t>& host_sign_list,
                                 int node_num) {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
120
  VLOG(3) << "Going to gather server ips";
121 122 123 124 125
  pslib_ptr_->gather_servers(const_cast<uint64_t*>(host_sign_list.data()),
                             node_num);
#endif
}

D
dongdaxiang 已提交
126
void FleetWrapper::GatherClients(const std::vector<uint64_t>& host_sign_list) {
X
xjqbest 已提交
127 128 129
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to gather client ips";
  size_t len = host_sign_list.size();
D
dongdaxiang 已提交
130
  pslib_ptr_->gather_clients(const_cast<uint64_t*>(host_sign_list.data()), len);
X
xjqbest 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
#endif
}

std::vector<uint64_t> FleetWrapper::GetClientsInfo() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to get client info";
  return pslib_ptr_->get_client_info();
#endif
  return std::vector<uint64_t>();
}

void FleetWrapper::CreateClient2ClientConnection() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to create client2client connection";
  pslib_ptr_->create_client2client_connection();
#endif
}

149 150 151 152 153 154 155 156 157 158 159 160
void FleetWrapper::PullSparseVarsSync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values, int fea_value_dim) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<::std::future<int32_t>> pull_sparse_status;
  pull_sparse_status.resize(0);
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (auto name : var_names) {
    Variable* var = scope.FindVar(name);
161 162 163
    if (var == nullptr) {
      continue;
    }
164
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
165
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
166 167 168 169 170 171 172 173 174
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
D
dongdaxiang 已提交
175 176 177 178 179 180 181 182 183 184 185
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }
  auto status = pslib_ptr_->_worker_ptr->pull_sparse(
      pull_result_ptr.data(), table_id, fea_keys->data(), fea_keys->size());
  pull_sparse_status.push_back(std::move(status));
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  for (auto& t : pull_sparse_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      exit(-1);
    }
  }
#endif
}

void FleetWrapper::PullDenseVarsAsync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names,
    std::vector<::std::future<int32_t>>* pull_dense_status) {
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
202 203
  auto& regions = _regions[tid];
  regions.clear();
204 205 206
  regions.resize(var_names.size());
  for (auto i = 0u; i < var_names.size(); ++i) {
    Variable* var = scope.FindVar(var_names[i]);
207 208 209
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
210
    regions[i] = std::move(reg);
211 212 213 214 215 216 217 218 219 220 221
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  pull_dense_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PullDenseVarsSync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
222 223
  auto& regions = _regions[tid];
  regions.clear();
224 225 226 227 228 229 230 231 232 233 234 235 236 237
  regions.reserve(var_names.size());
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  status.wait();
#endif
}

238
void FleetWrapper::PushDenseParamSync(
D
dongdaxiang 已提交
239
    const Scope& scope, const uint64_t table_id,
240 241 242 243 244 245
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
  auto place = platform::CPUPlace();
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
X
xjqbest 已提交
246
    CHECK(var != nullptr) << "var[" << t << "] not found";
247
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
248
    float* g = tensor->mutable_data<float>(place);
249 250 251
    paddle::ps::Region reg(g, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
252 253 254 255 256
  auto push_status = pslib_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  CHECK(status == 0) << "push dense param failed, status[" << status << "]";
257 258 259
#endif
}

D
dongdaxiang 已提交
260 261 262 263
void FleetWrapper::PushDenseVarsSync(
    Scope* scope, const uint64_t table_id,
    const std::vector<std::string>& var_names) {}

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
void FleetWrapper::PushDenseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names,
    std::vector<::std::future<int32_t>>* push_sparse_status) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int count = tensor->numel();
    float* g = tensor->data<float>();
    paddle::ps::Region reg(g, count);
    regions.emplace_back(std::move(reg));
  }
  auto status = pslib_ptr_->_worker_ptr->push_dense(regions.data(),
                                                    regions.size(), table_id);
  push_sparse_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PushSparseVarsWithLabelAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<uint64_t>& fea_keys, const std::vector<float>& fea_labels,
    const std::vector<std::string>& sparse_key_names,
    const std::vector<std::string>& sparse_grad_names, const int emb_dim,
    std::vector<std::vector<float>>* push_values,
290 291
    std::vector<::std::future<int32_t>>* push_sparse_status,
    const int batch_size, const bool use_cvm) {
292 293
#ifdef PADDLE_WITH_PSLIB
  int offset = 2;
294 295 296 297 298 299
  int grad_dim = emb_dim;
  if (use_cvm) {
    offset = 0;
    grad_dim = emb_dim - 2;
  }
  CHECK_GE(grad_dim, 0);
300 301 302 303 304

  push_values->resize(fea_keys.size() + 1);
  for (auto& t : *push_values) {
    t.resize(emb_dim + offset);
  }
305 306 307
  uint64_t fea_idx = 0u;
  for (size_t i = 0; i < sparse_key_names.size(); ++i) {
    Variable* var = scope.FindVar(sparse_key_names[i]);
308 309 310
    if (var == nullptr) {
      continue;
    }
311
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
312 313
    if (tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
314 315 316 317
      exit(-1);
    }
    int len = tensor->numel();
    int64_t* ids = tensor->data<int64_t>();
318 319 320 321 322 323 324

    Variable* g_var = scope.FindVar(sparse_grad_names[i]);
    CHECK(g_var != nullptr) << "var[" << sparse_grad_names[i] << "] not found";
    LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
    if (g_tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
      exit(-1);
325
    }
326 327
    float* g = g_tensor->data<float>();

328 329 330 331 332 333 334
    if (scale_sparse_gradient_with_batch_size_ && grad_dim > 0) {
      int dim = emb_dim + offset;
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / dim, dim);
      g_mat.rightCols(grad_dim) *= batch_size;
    }
335 336 337 338 339
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        g += emb_dim;
        continue;
      }
340 341
      CHECK(fea_idx < (*push_values).size());
      CHECK(fea_idx < fea_labels.size());
342 343 344 345 346 347 348 349 350
      if (use_cvm) {
        memcpy((*push_values)[fea_idx].data() + offset, g,
               sizeof(float) * emb_dim);
      } else {
        memcpy((*push_values)[fea_idx].data() + offset, g,
               sizeof(float) * emb_dim);
        (*push_values)[fea_idx][0] = 1.0f;
        (*push_values)[fea_idx][1] = static_cast<float>(fea_labels[fea_idx]);
      }
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
      g += emb_dim;
      fea_idx++;
    }
  }
  CHECK(fea_idx == fea_keys.size()) << "fea_idx: " << fea_idx
                                    << "features size: " << fea_keys.size();
  std::vector<float*> push_g_vec;
  for (auto i = 0u; i < fea_keys.size(); ++i) {
    push_g_vec.push_back((*push_values)[i].data());
  }
  auto status = pslib_ptr_->_worker_ptr->push_sparse(
      table_id, fea_keys.data(), (const float**)push_g_vec.data(),
      fea_keys.size());
  push_sparse_status->push_back(std::move(status));

#endif
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
void FleetWrapper::LoadFromPaddleModel(Scope& scope, const uint64_t table_id,
                                       std::vector<std::string> var_list,
                                       std::string model_path,
                                       std::string model_proto_file,
                                       bool load_combine) {
  // load ProgramDesc from model file
  auto read_proto_func = [](const std::string& filename) -> ProgramDesc {
    std::string contents;
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
    fin.seekg(0, std::ios::end);
    contents.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&contents[0], contents.size());
    fin.close();
    ProgramDesc program_desc(contents);
    return program_desc;
  };
  const ProgramDesc old_program = read_proto_func(model_proto_file);
  Scope* old_scope = new Scope();
  auto& old_block = old_program.Block(0);
  auto place = platform::CPUPlace();
  std::vector<std::string> old_param_list;

  for (auto& t : var_list) {
    VarDesc* old_var_desc = old_block.FindVar(t);
    if (old_var_desc == nullptr) {
      continue;
    }
    // init variable in scope
    Variable* old_var = old_scope->Var(old_var_desc->Name());
    InitializeVariable(old_var, old_var_desc->GetType());
    old_param_list.push_back(t);
    if (load_combine) {
      continue;
    }
    // load variable from model
    paddle::framework::AttributeMap attrs;
    attrs.insert({"file_path", model_path + "/" + old_var_desc->Name()});
    auto load_op = paddle::framework::OpRegistry::CreateOp(
        "load", {}, {{"Out", {old_var_desc->Name()}}}, attrs);
    load_op->Run(*old_scope, place);
  }

  if (load_combine) {
    std::sort(old_param_list.begin(), old_param_list.end());
    paddle::framework::AttributeMap attrs;
    attrs.insert({"file_path", model_path});
    auto load_op = paddle::framework::OpRegistry::CreateOp(
        "load_combine", {}, {{"Out", old_param_list}}, attrs);
    load_op->Run(*old_scope, place);
  }

  for (auto& t : old_param_list) {
    Variable* old_var = old_scope->Var(t);
    // old model data, here we assume data type is float
    LoDTensor* old_tensor = old_var->GetMutable<LoDTensor>();
    float* old_data = old_tensor->data<float>();
    // new model data, here we assume data type is float
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* data = tensor->data<float>();
    // copy from old data to new data
    if (old_tensor->numel() > tensor->numel()) {
      memcpy(data, old_data, tensor->numel() * sizeof(float));
    } else {
      memcpy(data, old_data, old_tensor->numel() * sizeof(float));
    }
  }
  delete old_scope;
  PushDenseParamSync(scope, table_id, old_param_list);
}

442 443 444 445 446 447 448 449 450 451 452 453 454
void FleetWrapper::LoadModel(const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->load(path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model from path:" << path << " failed";
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib";
#endif
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
void FleetWrapper::LoadModelOneTable(const uint64_t table_id,
                                     const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret =
      pslib_ptr_->_worker_ptr->load(table_id, path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model of table id: " << table_id
               << ", from path: " << path << " failed";
  }
#else
  VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib";
#endif
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
void FleetWrapper::SaveModel(const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->save(path, std::to_string(mode));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "save model failed";
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::SaveModel does nothing when no pslib";
#endif
}

void FleetWrapper::ShrinkSparseTable(int table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->shrink(table_id);
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib";
#endif
}

void FleetWrapper::ShrinkDenseTable(int table_id, Scope* scope,
                                    std::vector<std::string> var_list,
                                    float decay) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (std::string& name : var_list) {
    if (name.find("batch_sum") != std::string::npos) {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
      VLOG(3) << "prepare shrink dense batch_sum";
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
      Eigen::Map<Eigen::MatrixXf> mat(g, 1, tensor->numel());
      mat *= decay;
      paddle::ps::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    } else {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
      paddle::ps::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
  auto push_status = pslib_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  if (status != 0) {
    LOG(FATAL) << "push shrink dense param failed, status[" << status << "]";
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib";
#endif
}

void FleetWrapper::ClientFlush() {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->flush();
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ServerFlush does nothing when no pslib";
#endif
}

540 541
int FleetWrapper::RegisterClientToClientMsgHandler(int msg_type,
                                                   MsgHandlerFunc handler) {
542
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
543 544 545
  VLOG(3) << "calling FleetWrapper::RegisterClientToClientMsgHandler";
  VLOG(3) << "pslib_ptr_=" << pslib_ptr_;
  VLOG(3) << "_worker_ptr=" << pslib_ptr_->_worker_ptr;
546 547
  return pslib_ptr_->_worker_ptr->registe_client2client_msg_handler(msg_type,
                                                                    handler);
548 549 550 551
#else
  VLOG(0) << "FleetWrapper::RegisterClientToClientMsgHandler"
          << " does nothing when no pslib";
#endif
X
xujiaqi01 已提交
552
  return 0;
553 554
}

555 556
std::future<int32_t> FleetWrapper::SendClientToClientMsg(
    int msg_type, int to_client_id, const std::string& msg) {
557
#ifdef PADDLE_WITH_PSLIB
558 559
  return pslib_ptr_->_worker_ptr->send_client2client_msg(msg_type, to_client_id,
                                                         msg);
560 561 562 563
#else
  VLOG(0) << "FleetWrapper::SendClientToClientMsg"
          << " does nothing when no pslib";
#endif
564
  return std::future<int32_t>();
X
xujiaqi01 已提交
565 566
}

D
dongdaxiang 已提交
567
template <typename T>
568
void FleetWrapper::Serialize(const std::vector<T*>& t, std::string* str) {
569 570
#ifdef PADDLE_WITH_PSLIB
  paddle::ps::BinaryArchive ar;
571 572 573
  for (size_t i = 0; i < t.size(); ++i) {
    ar << *(t[i]);
  }
X
xujiaqi01 已提交
574
  *str = std::string(ar.buffer(), ar.length());
575
#else
576
  VLOG(0) << "FleetWrapper::Serialize does nothing when no pslib";
577 578 579
#endif
}

D
dongdaxiang 已提交
580
template <typename T>
581
void FleetWrapper::Deserialize(std::vector<T>* t, const std::string& str) {
582
#ifdef PADDLE_WITH_PSLIB
583 584 585
  if (str.length() == 0) {
    return;
  }
586 587
  paddle::ps::BinaryArchive ar;
  ar.set_read_buffer(const_cast<char*>(str.c_str()), str.length(), nullptr);
588 589 590 591 592 593 594 595
  if (ar.cursor() == ar.finish()) {
    return;
  }
  while (ar.cursor() < ar.finish()) {
    t->push_back(ar.get<T>());
  }
  CHECK(ar.cursor() == ar.finish());
  VLOG(3) << "Deserialize size " << t->size();
596
#else
597
  VLOG(0) << "FleetWrapper::Deserialize does nothing when no pslib";
598 599 600
#endif
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
std::default_random_engine& FleetWrapper::LocalRandomEngine() {
  struct engine_wrapper_t {
    std::default_random_engine engine;
#ifdef PADDLE_WITH_PSLIB
    engine_wrapper_t() {
      struct timespec tp;
      clock_gettime(CLOCK_REALTIME, &tp);
      double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9;
      static std::atomic<uint64_t> x(0);
      std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)};
      engine.seed(sseq);
    }
#endif
  };
  thread_local engine_wrapper_t r;
  return r.engine;
}

619
template void FleetWrapper::Serialize<std::vector<MultiSlotType>>(
620 621 622
    const std::vector<std::vector<MultiSlotType>*>&, std::string*);
template void FleetWrapper::Deserialize<std::vector<MultiSlotType>>(
    std::vector<std::vector<MultiSlotType>>*, const std::string&);
623

624 625
}  // end namespace framework
}  // end namespace paddle