unfold_op.h 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

#pragma once

#include <memory>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

inline int CalcOutputSize(int input_size, int filter_size, int dilation,
                          int padding1, int padding2, int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size = (input_size + padding1 + padding2 - dkernel) / stride + 1;
32 33 34 35 36 37 38 39
  PADDLE_ENFORCE_GT(
      output_size, 0UL,
      platform::errors::InvalidArgument(
          "Due to the settings of padding(%d, %d), filter_size(%d), "
          "dilation(%d) and "
          "stride(%d), the output size is less than 0, please check "
          "again. Input_size:%d",
          padding1, padding2, filter_size, dilation, stride, input_size));
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

  return output_size;
}

template <typename DeviceContext, typename T>
class UnfoldOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Tensor* input = ctx.Input<Tensor>("X");
    const int batch_size = static_cast<int>(input->dims()[0]);
    Tensor* output = ctx.Output<Tensor>("Y");
    output->mutable_data<T>(ctx.GetPlace());

    std::vector<int> kernel_sizes = ctx.Attr<std::vector<int>>("kernel_sizes");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");

    math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    auto input_dims = input->dims();

    int output_height =
        CalcOutputSize(input_dims[2], kernel_sizes[0], dilations[0],
                       paddings[0], paddings[2], strides[0]);
    int output_width =
        CalcOutputSize(input_dims[3], kernel_sizes[1], dilations[1],
                       paddings[1], paddings[3], strides[1]);

    framework::DDim input_shape({input_dims[1], input_dims[2], input_dims[3]});
    framework::DDim output_matrix_shape({input_dims[1], kernel_sizes[0],
                                         kernel_sizes[1], output_height,
                                         output_width});

    for (int i = 0; i < batch_size; i++) {
      Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
      im2col(dev_ctx, in_batch, dilations, strides, paddings, &out_batch);
    }
  }
};

template <typename DeviceContext, typename T>
class UnfoldGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Tensor* output_grad = ctx.Input<Tensor>(framework::GradVarName("Y"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    input_grad->mutable_data<T>(ctx.GetPlace());

    if ((!output_grad) || (!input_grad)) return;

    std::vector<int> kernel_sizes = ctx.Attr<std::vector<int>>("kernel_sizes");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");

    const int batch_size = static_cast<int>(input_grad->dims()[0]);

    auto input_dims = input_grad->dims();

    int output_height =
        CalcOutputSize(input_dims[2], kernel_sizes[0], dilations[0],
                       paddings[0], paddings[2], strides[0]);
    int output_width =
        CalcOutputSize(input_dims[3], kernel_sizes[1], dilations[1],
                       paddings[1], paddings[3], strides[1]);

    framework::DDim input_shape({input_dims[1], input_dims[2], input_dims[3]});
    framework::DDim output_matrix_shape({input_dims[1], kernel_sizes[0],
                                         kernel_sizes[1], output_height,
                                         output_width});

    math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(dev_ctx, input_grad, static_cast<T>(0));
    for (int i = 0; i < batch_size; i++) {
      Tensor out_grad_batch =
          output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
      Tensor in_grad_batch = input_grad->Slice(i, i + 1).Resize(input_shape);
      col2im(dev_ctx, out_grad_batch, dilations, strides, paddings,
             &in_grad_batch);
    }
  }
};
}  // namespace operators
}  // namespace paddle