README.html 39.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Python Data Reader Design Doc &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
65
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
66 67 68 69 70 71 72 73 74 75 76 77
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
78
          <li><a href="/">Home</a></li>
79 80 81 82 83 84 85 86
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a></li>
87
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_en.html">MOBILE</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
111 112
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
113
<li class="toctree-l3"><a class="reference internal" href="../../howto/dev/build_en.html">Build using Docker</a></li>
114
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_en.html">Build from Sources</a></li>
115 116 117 118 119 120 121 122 123 124 125
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
126 127 128 129 130 131 132
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/fabric_en.html">fabric</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/openmpi_en.html">openmpi</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_en.html">kubernetes</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_aws_en.html">kubernetes on AWS</a></li>
</ul>
</li>
133
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/new_layer_en.html">Write New Layers</a></li>
134
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
135
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/write_docs_en.html">Contribute Documentation</a></li>
136 137 138 139
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
140 141 142 143
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a><ul>
144 145 146
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
147
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
148 149 150 151 152 153
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
154 155 156 157 158 159
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
160
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
161
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/fluid.html">Fluid</a><ul>
162 163 164 165 166 167 168 169 170 171 172
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/layers.html">layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/data_feeder.html">data_feeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/executor.html">executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/initializer.html">initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/evaluator.html">evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/nets.html">nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/optimizer.html">optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/param_attr.html">param_attr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/profiler.html">profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/regularizer.html">regularizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/io.html">io</a></li>
173 174
</ul>
</li>
175 176
</ul>
</li>
177 178
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
179
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_ios_en.html">Build PaddlePaddle for iOS</a></li>
180 181 182
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
</ul>
</li>
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Python Data Reader Design Doc</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="python-data-reader-design-doc">
<span id="python-data-reader-design-doc"></span><h1>Python Data Reader Design Doc<a class="headerlink" href="#python-data-reader-design-doc" title="Permalink to this headline"></a></h1>
214
<p>During the training and testing phases, PaddlePaddle programs need to read data. To help the users write code that performs reading input data, we define the following:</p>
215
<ul class="simple">
216 217 218 219
<li>A <em>reader</em>: A function that reads data (from file, network, random number generator, etc) and yields the data items.</li>
<li>A <em>reader creator</em>: A function that returns a reader function.</li>
<li>A <em>reader decorator</em>: A function, which takes in one or more readers, and returns a reader.</li>
<li>A <em>batch reader</em>: A function that reads data (from <em>reader</em>, file, network, random number generator, etc) and yields a batch of data items.</li>
220
</ul>
221
<p>and also provide a function which can convert a reader to a batch reader, frequently used reader creators and reader decorators.</p>
222 223
<div class="section" id="data-reader-interface">
<span id="data-reader-interface"></span><h2>Data Reader Interface<a class="headerlink" href="#data-reader-interface" title="Permalink to this headline"></a></h2>
224
<p><em>Data reader</em> doesn&#8217;t have to be a function that reads and yields data items. It can just be any function without any parameters that creates an iterable (anything can be used in <code class="docutils literal"><span class="pre">for</span> <span class="pre">x</span> <span class="pre">in</span> <span class="pre">iterable</span></code>) as follows:</p>
225 226 227
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">iterable</span> <span class="o">=</span> <span class="n">data_reader</span><span class="p">()</span>
</pre></div>
</div>
228 229
<p>The item produced from the iterable should be a <strong>single</strong> entry of data and <strong>not</strong> a mini batch. The entry of data could be a single item or a tuple of items. Item should be of one of the <a class="reference external" href="http://www.paddlepaddle.org/doc/ui/data_provider/pydataprovider2.html?highlight=dense_vector#input-types">supported types</a> (e.g., numpy 1d array of float32, int, list of int etc.)</p>
<p>An example implementation for single item data reader creator is as follows:</p>
230 231 232 233 234 235 236
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">reader_creator_random_image</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">height</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">reader</span>
</pre></div>
</div>
237
<p>An example implementation for multiple item data reader creator is as follows:</p>
238
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">reader_creator_random_image_and_label</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">label</span><span class="p">):</span>
239 240 241 242 243 244 245 246 247
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">),</span> <span class="n">label</span>
    <span class="k">return</span> <span class="n">reader</span>
</pre></div>
</div>
</div>
<div class="section" id="batch-reader-interface">
<span id="batch-reader-interface"></span><h2>Batch Reader Interface<a class="headerlink" href="#batch-reader-interface" title="Permalink to this headline"></a></h2>
248 249
<p><em>Batch reader</em> can be any function without any parameters that creates an iterable (anything can be used in <code class="docutils literal"><span class="pre">for</span> <span class="pre">x</span> <span class="pre">in</span> <span class="pre">iterable</span></code>). The output of the iterable should be a batch (list) of data items. Each item inside the list should be a tuple.</p>
<p>Here are some valid outputs:</p>
250 251 252 253 254 255 256 257
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># a mini batch of three data items. Each data item consist three columns of data, each of which is 1.</span>
<span class="p">[(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span>
<span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">)]</span>

<span class="c1"># a mini batch of three data items, each data item is a list (single column).</span>
<span class="p">[([</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],),</span>
<span class="p">([</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">],),</span>
258
<span class="p">([</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">],)]</span>
259 260 261 262
</pre></div>
</div>
<p>Please note that each item inside the list must be a tuple, below is an invalid output:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span> <span class="c1"># wrong, [1,1,1] needs to be inside a tuple: ([1,1,1],).</span>
263 264
 <span class="c1"># Otherwise it is ambiguous whether [1,1,1] means a single column of data [1, 1, 1],</span>
 <span class="c1"># or three columns of data, each of which is 1.</span>
265 266 267 268 269
<span class="p">[[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span>
<span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">],</span>
<span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">]]</span>
</pre></div>
</div>
270
<p>It is easy to convert from a reader to a batch reader:</p>
271 272 273 274
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">mnist_train</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">mnist</span><span class="o">.</span><span class="n">train</span><span class="p">()</span>
<span class="n">mnist_train_batch_reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span><span class="n">mnist_train</span><span class="p">,</span> <span class="mi">128</span><span class="p">)</span>
</pre></div>
</div>
275
<p>It is also straight forward to create a custom batch reader:</p>
276 277 278 279 280 281 282 283 284 285 286 287 288
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">custom_batch_reader</span><span class="p">():</span>
    <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
        <span class="n">batch</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="mi">128</span><span class="p">):</span>
            <span class="n">batch</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">28</span><span class="o">*</span><span class="mi">28</span><span class="p">),))</span> <span class="c1"># note that it&#39;s a tuple being appended.</span>
        <span class="k">yield</span> <span class="n">batch</span>

<span class="n">mnist_random_image_batch_reader</span> <span class="o">=</span> <span class="n">custom_batch_reader</span>
</pre></div>
</div>
</div>
<div class="section" id="usage">
<span id="usage"></span><h2>Usage<a class="headerlink" href="#usage" title="Permalink to this headline"></a></h2>
289 290
<p>Following is how we can use the reader with PaddlePaddle:
The batch reader, a mapping from item(s) to data layer, the batch size and the number of total passes will be passed into <code class="docutils literal"><span class="pre">paddle.train</span></code> as follows:</p>
291 292 293 294 295 296 297 298 299 300 301 302
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># two data layer is created:</span>
<span class="n">image_layer</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="s2">&quot;image&quot;</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
<span class="n">label_layer</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="s2">&quot;label&quot;</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>

<span class="c1"># ...</span>
<span class="n">batch_reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">mnist</span><span class="o">.</span><span class="n">train</span><span class="p">(),</span> <span class="mi">128</span><span class="p">)</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">batch_reader</span><span class="p">,</span> <span class="p">{</span><span class="s2">&quot;image&quot;</span><span class="p">:</span><span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;label&quot;</span><span class="p">:</span><span class="mi">1</span><span class="p">},</span> <span class="mi">128</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="data-reader-decorator">
<span id="data-reader-decorator"></span><h2>Data Reader Decorator<a class="headerlink" href="#data-reader-decorator" title="Permalink to this headline"></a></h2>
303 304
<p>The <em>Data reader decorator</em> takes in a single reader or multiple data readers and returns a new data reader. It is similar to a <a class="reference external" href="https://wiki.python.org/moin/PythonDecorators">python decorator</a>, but it does not use <code class="docutils literal"><span class="pre">&#64;</span></code> in the syntax.</p>
<p>Since we have a strict interface for data readers (no parameters and return a single data item), a data reader can be used in a flexible way using data reader decorators. Following are a few examples:</p>
305 306
<div class="section" id="prefetch-data">
<span id="prefetch-data"></span><h3>Prefetch Data<a class="headerlink" href="#prefetch-data" title="Permalink to this headline"></a></h3>
307
<p>Since reading data may take some time and training can not proceed without data, it is generally a good idea to prefetch the data.</p>
308 309 310 311 312 313 314 315
<p>Use <code class="docutils literal"><span class="pre">paddle.reader.buffered</span></code> to prefetch data:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">buffered_reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">buffered</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">mnist</span><span class="o">.</span><span class="n">train</span><span class="p">(),</span> <span class="mi">100</span><span class="p">)</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">buffered_reader</span></code> will try to buffer (prefetch) <code class="docutils literal"><span class="pre">100</span></code> data entries.</p>
</div>
<div class="section" id="compose-multiple-data-readers">
<span id="compose-multiple-data-readers"></span><h3>Compose Multiple Data Readers<a class="headerlink" href="#compose-multiple-data-readers" title="Permalink to this headline"></a></h3>
316 317
<p>For example, if we want to use a source of real images (say reusing mnist dataset), and a source of random images as input for <a class="reference external" href="https://arxiv.org/abs/1406.2661">Generative Adversarial Networks</a>.</p>
<p>We can do the following :</p>
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">reader_creator_random_image</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">height</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">reader</span>

<span class="k">def</span> <span class="nf">reader_creator_bool</span><span class="p">(</span><span class="n">t</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">:</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">t</span>
    <span class="k">return</span> <span class="n">reader</span>

<span class="n">true_reader</span> <span class="o">=</span> <span class="n">reader_creator_bool</span><span class="p">(</span><span class="bp">True</span><span class="p">)</span>
<span class="n">false_reader</span> <span class="o">=</span> <span class="n">reader_creator_bool</span><span class="p">(</span><span class="bp">False</span><span class="p">)</span>

<span class="n">reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">compose</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">mnist</span><span class="o">.</span><span class="n">train</span><span class="p">(),</span> <span class="n">data_reader_creator_random_image</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span> <span class="n">true_reader</span><span class="p">,</span> <span class="n">false_reader</span><span class="p">)</span>
<span class="c1"># Skipped 1 because paddle.dataset.mnist.train() produces two items per data entry.</span>
335
<span class="c1"># And we don&#39;t care about the second item at this time.</span>
336 337 338 339 340 341
<span class="n">paddle</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span><span class="n">reader</span><span class="p">,</span> <span class="mi">128</span><span class="p">),</span> <span class="p">{</span><span class="s2">&quot;true_image&quot;</span><span class="p">:</span><span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;fake_image&quot;</span><span class="p">:</span> <span class="mi">2</span><span class="p">,</span> <span class="s2">&quot;true_label&quot;</span><span class="p">:</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;false_label&quot;</span><span class="p">:</span> <span class="mi">4</span><span class="p">},</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="shuffle">
<span id="shuffle"></span><h3>Shuffle<a class="headerlink" href="#shuffle" title="Permalink to this headline"></a></h3>
342
<p>Given the shuffle buffer size <code class="docutils literal"><span class="pre">n</span></code>, <code class="docutils literal"><span class="pre">paddle.reader.shuffle</span></code> returns a data reader that buffers <code class="docutils literal"><span class="pre">n</span></code> data entries and shuffles them before a data entry is read.</p>
343 344 345 346 347 348 349 350
<p>Example:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">mnist</span><span class="o">.</span><span class="n">train</span><span class="p">(),</span> <span class="mi">512</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="q-a">
<span id="q-a"></span><h2>Q &amp; A<a class="headerlink" href="#q-a" title="Permalink to this headline"></a></h2>
351 352 353 354
<div class="section" id="why-does-a-reader-return-only-a-single-entry-and-not-a-mini-batch">
<span id="why-does-a-reader-return-only-a-single-entry-and-not-a-mini-batch"></span><h3>Why does a reader return only a single entry, and not a mini batch?<a class="headerlink" href="#why-does-a-reader-return-only-a-single-entry-and-not-a-mini-batch" title="Permalink to this headline"></a></h3>
<p>Returning a single entry makes reusing existing data readers much easier (for example, if an existing reader returns 3 entries instead if a single entry, the training code will be more complicated because it need to handle cases like a batch size 2).</p>
<p>We provide a function: <code class="docutils literal"><span class="pre">paddle.batch</span></code> to turn (a single entry) reader into a batch reader.</p>
355
</div>
356 357 358
<div class="section" id="why-do-we-need-a-batch-reader-isn-t-is-sufficient-to-give-the-reader-and-batch-size-as-arguments-during-training">
<span id="why-do-we-need-a-batch-reader-isn-t-is-sufficient-to-give-the-reader-and-batch-size-as-arguments-during-training"></span><h3>Why do we need a batch reader, isn&#8217;t is sufficient to give the reader and batch_size as arguments during training ?<a class="headerlink" href="#why-do-we-need-a-batch-reader-isn-t-is-sufficient-to-give-the-reader-and-batch-size-as-arguments-during-training" title="Permalink to this headline"></a></h3>
<p>In most of the cases, it would be sufficient to give the reader and batch_size as arguments to the train method. However sometimes the user wants to customize the order of data entries inside a mini batch, or even change the batch size dynamically. For these cases using a batch reader is very efficient and helpful.</p>
359
</div>
360 361 362
<div class="section" id="why-use-a-dictionary-instead-of-a-list-to-provide-mapping">
<span id="why-use-a-dictionary-instead-of-a-list-to-provide-mapping"></span><h3>Why use a dictionary instead of a list to provide mapping?<a class="headerlink" href="#why-use-a-dictionary-instead-of-a-list-to-provide-mapping" title="Permalink to this headline"></a></h3>
<p>Using a dictionary (<code class="docutils literal"><span class="pre">{&quot;image&quot;:0,</span> <span class="pre">&quot;label&quot;:1}</span></code>) instead of a list (<code class="docutils literal"><span class="pre">[&quot;image&quot;,</span> <span class="pre">&quot;label&quot;]</span></code>) gives the advantage that the user can easily reuse the items (e.g., using <code class="docutils literal"><span class="pre">{&quot;image_a&quot;:0,</span> <span class="pre">&quot;image_b&quot;:0,</span> <span class="pre">&quot;label&quot;:1}</span></code>) or even skip an item (e.g., using <code class="docutils literal"><span class="pre">{&quot;image_a&quot;:0,</span> <span class="pre">&quot;label&quot;:2}</span></code>).</p>
363
</div>
364 365
<div class="section" id="how-to-create-a-custom-data-reader-creator">
<span id="how-to-create-a-custom-data-reader-creator"></span><h3>How to create a custom data reader creator ?<a class="headerlink" href="#how-to-create-a-custom-data-reader-creator" title="Permalink to this headline"></a></h3>
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">image_reader_creator</span><span class="p">(</span><span class="n">image_path</span><span class="p">,</span> <span class="n">label_path</span><span class="p">,</span> <span class="n">n</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="n">f</span> <span class="o">=</span> <span class="nb">open</span><span class="p">(</span><span class="n">image_path</span><span class="p">)</span>
        <span class="n">l</span> <span class="o">=</span> <span class="nb">open</span><span class="p">(</span><span class="n">label_path</span><span class="p">)</span>
        <span class="n">images</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">fromfile</span><span class="p">(</span>
            <span class="n">f</span><span class="p">,</span> <span class="s1">&#39;ubyte&#39;</span><span class="p">,</span> <span class="n">count</span><span class="o">=</span><span class="n">n</span> <span class="o">*</span> <span class="mi">28</span> <span class="o">*</span> <span class="mi">28</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="n">n</span><span class="p">,</span> <span class="mi">28</span> <span class="o">*</span> <span class="mi">28</span><span class="p">))</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
        <span class="n">images</span> <span class="o">=</span> <span class="n">images</span> <span class="o">/</span> <span class="mf">255.0</span> <span class="o">*</span> <span class="mf">2.0</span> <span class="o">-</span> <span class="mf">1.0</span>
        <span class="n">labels</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">fromfile</span><span class="p">(</span><span class="n">l</span><span class="p">,</span> <span class="s1">&#39;ubyte&#39;</span><span class="p">,</span> <span class="n">count</span><span class="o">=</span><span class="n">n</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s2">&quot;int&quot;</span><span class="p">)</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
            <span class="k">yield</span> <span class="n">images</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="p">:],</span> <span class="n">labels</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="c1"># a single entry of data is created each time</span>
        <span class="n">f</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
        <span class="n">l</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
    <span class="k">return</span> <span class="n">reader</span>

<span class="c1"># images_reader_creator creates a reader</span>
<span class="n">reader</span> <span class="o">=</span> <span class="n">image_reader_creator</span><span class="p">(</span><span class="s2">&quot;/path/to/image_file&quot;</span><span class="p">,</span> <span class="s2">&quot;/path/to/label_file&quot;</span><span class="p">,</span> <span class="mi">1024</span><span class="p">)</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span><span class="n">reader</span><span class="p">,</span> <span class="mi">128</span><span class="p">),</span> <span class="p">{</span><span class="s2">&quot;image&quot;</span><span class="p">:</span><span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;label&quot;</span><span class="p">:</span><span class="mi">1</span><span class="p">},</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="how-is-paddle-train-implemented">
<span id="how-is-paddle-train-implemented"></span><h3>How is <code class="docutils literal"><span class="pre">paddle.train</span></code> implemented<a class="headerlink" href="#how-is-paddle-train-implemented" title="Permalink to this headline"></a></h3>
388
<p>An example implementation of paddle.train is:</p>
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="n">batch_reader</span><span class="p">,</span> <span class="n">mapping</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">,</span> <span class="n">total_pass</span><span class="p">):</span>
    <span class="k">for</span> <span class="n">pass_idx</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">total_pass</span><span class="p">):</span>
        <span class="k">for</span> <span class="n">mini_batch</span> <span class="ow">in</span> <span class="n">batch_reader</span><span class="p">():</span> <span class="c1"># this loop will never end in online learning.</span>
            <span class="n">do_forward_backward</span><span class="p">(</span><span class="n">mini_batch</span><span class="p">,</span> <span class="n">mapping</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
434 435
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
436 437 438 439 440
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
441
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
442 443 444 445 446 447 448 449 450 451 452 453 454
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
455
</html>