graph_pattern_detector.h 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest_prod.h>
#endif

#include <numeric>
22 23 24
#include <string>
#include <utility>
#include <vector>
25 26
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
27
#include "paddle/fluid/inference/analysis/dot.h"
28 29 30 31

namespace paddle {
namespace framework {
namespace ir {
32
class PDPattern;
33

34
// Some basic terminologies:
35 36 37 38 39 40 41 42 43
//   - PDPattern: a pattern defined as a data flow graph.
//   - PDNode: the node in the pattern, each PDNode represents an `ir::Node`
//     that meets some conditions defined in `PDNode.teller`.
//   - A pattern is defined with PDNodes with edges.

// Pattern detector node. This node helps to build a pattern.
struct PDNode {
  // tell whether an ir::Node* is a candidation for a PDNode.
  using teller_t = std::function<bool(Node*)>;
44
  enum class Type { kOp, kVar };
Y
Yan Chunwei 已提交
45 46 47 48 49 50
  enum class Role {
    kUnknown,      // No role,
    kInput,        // an input and will be retained,
    kOutput,       // an output and will be retained,
    kIntermediate  // will be removed after handler.
  };
51

52 53 54
  // this link to others
  PDNode& LinksTo(const std::vector<PDNode*>& others);
  PDNode& LinksFrom(const std::vector<PDNode*>& others);
55 56

  bool Tell(Node* node) const {
Y
Yan Chunwei 已提交
57 58 59 60 61 62
    if (teller_) return teller_(node);

    for (auto& asrt : asserts_) {
      if (!asrt(node)) return false;
    }
    return true;
63 64
  }

65 66 67
  bool IsOp() const { return type_ == Type::kOp; }
  bool IsVar() const { return type_ == Type::kVar; }

68 69 70
  const std::string& name() const { return name_; }

  PDNode& operator=(const PDNode&) = delete;
Y
Yan Chunwei 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  PDNode(const PDNode&) = delete;

  // Mark this node is an Input of a subgraph and will be retained.
  PDNode* AsInput() {
    role_ = Role::kInput;
    return this;
  }
  // Mark this node is an Output of a subgraph and will be retained.
  PDNode* AsOutput() {
    role_ = Role::kOutput;
    return this;
  }
  // Mark this node will be removed, so all the links should be inside a matched
  // sub-graph.
  PDNode* AsIntermediate() {
    role_ = Role::kIntermediate;
    return this;
  }

  bool IsIntermediate() const { return role_ == Role::kIntermediate; }
  bool IsInput() const { return role_ == Role::kInput; }
  bool IsOutput() const { return role_ == Role::kOutput; }

  // Assertions, helper functions to simplify the pattern definition.
  PDNode* assert_is_op();
  PDNode* assert_is_op(const std::string& op_type);
  PDNode* assert_is_var();
  PDNode* assert_var_not_persistable();
  PDNode* assert_is_persistable_var();
  PDNode* assert_is_op_output(const std::string& op_type);
101 102
  PDNode* assert_is_op_output(const std::string& op_type,
                              const std::string& argument);
Y
Yan Chunwei 已提交
103
  PDNode* assert_is_op_input(const std::string& op_type);
104 105
  PDNode* assert_is_op_input(const std::string& op_type,
                             const std::string& argument);
Y
Yan Chunwei 已提交
106 107 108 109 110 111 112 113 114
  PDNode* assert_is_op_nth_input(const std::string& op_type,
                                 const std::string& argument, int nth);
  PDNode* assert_is_op_nth_output(const std::string& op_type,
                                  const std::string& argument, int nth);
  PDNode* assert_is_only_input_of_op(const std::string& op_type);
  PDNode* assert_is_only_output_of_op(const std::string& op_type);
  PDNode* assert_op_has_n_inputs(const std::string& op_type, size_t n);
  PDNode* assert_op_has_n_outputs(const std::string& op_type, size_t n);
  PDNode* assert_more(teller_t&& teller);
115 116

 private:
Y
Yan Chunwei 已提交
117 118 119
  PDNode(PDPattern* pattern, const std::string& name = "",
         Type type = Type::kVar)
      : pattern_(pattern), name_(name), type_(type) {}
120 121 122 123 124 125 126 127 128 129 130 131 132
  PDNode(teller_t&& teller, PDPattern* pattern, const std::string& name = "",
         Type type = Type::kVar)
      : teller_(std::move(teller)),
        pattern_(pattern),
        name_(name),
        type_(type) {
    PADDLE_ENFORCE(teller_ != nullptr, "invalid teller functer is set.");
  }

  PDNode(PDNode&& other) = default;

  friend class PDPattern;

Y
Yan Chunwei 已提交
133
  // Will removed latter.
134
  teller_t teller_;
Y
Yan Chunwei 已提交
135
  std::vector<teller_t> asserts_;
136
  PDPattern* pattern_;
137
  std::string name_;
138
  Type type_;
Y
Yan Chunwei 已提交
139
  Role role_{Role::kUnknown};
140 141 142 143 144 145 146 147 148 149 150 151
};

/*
 * A pattern in a graph, which defined with PDNode and edges. Most graph
 * patterns can be divided into PDNodes and link relations between them.
 *
 * For example, the FC fusion need to filter the MUL and ELEMENTWISE_ADD
 * operators from the computation graph, the MUL's output should have only one
 * consumer which is the ELEMENTWISE_ADD.
 * This pattern can be defined as with the following pseudo codes
 *
 *     // Create two operator PDNodes.
Y
Yan Chunwei 已提交
152 153
 *     MUL = PDPattern.NewNode().assert_is_op("mul");
 *     ELE = PDPattern.NewNode().assert_is_op("elementwise_add");
154
 *     // Create the variable PDNodes.
Y
Yan Chunwei 已提交
155 156 157 158 159 160
 *     MUL_out = PDPattern.NewNode().assert_is_op_output("mul") \
 *                                  .assert_is_op_input("elementwise_add") \
 *                                  .AsIntermediate();
 *     // Add relations.
 *     MUL->LinksTo({MUL_out});
 *     MUL_out->LinksTo({ELE});
161
 *
Y
Yan Chunwei 已提交
162 163
 * One can add more specific asserts for PDNodes or edges, both the Operator
 * and Variable Nodes can be ruled in PDNode.assert_more(...).
164 165 166 167 168 169 170 171 172 173 174
 *
 * PDPattern can record the general patterns, such as the pattern represents
 *   - Op in CPU -> Op in GPU -> Op in CPU, to findout the IO abnormal place.
 *   - Ops whose inputs and outputs share the same variables
 */
class PDPattern {
 public:
  using edge_t = std::pair<PDNode*, PDNode*>;

  void AddEdge(PDNode* a, PDNode* b);

175
  PDNode* NewNode(PDNode::teller_t&& teller, const std::string& name = NewID());
Y
Yan Chunwei 已提交
176
  PDNode* NewNode(const std::string& name = NewID());
177 178 179
  PDNode* NewNode(const std::string& prefix, const std::string& name) {
    return NewNode(prefix + "/" + name);
  }
Y
Yan Chunwei 已提交
180
  PDNode* RetrieveNode(const std::string& id) const;
181 182 183 184

  const std::vector<std::unique_ptr<PDNode>>& nodes() const { return nodes_; }
  const std::vector<edge_t>& edges() const { return edges_; }

185 186
  std::string DotString() const;

187 188 189 190 191 192
 private:
#ifdef PADDLE_WITH_TESTING
  FRIEND_TEST(PDPattern, AddEdge);
  FRIEND_TEST(PDPattern, NewNode);
#endif

193 194
  static std::string NewID() { return "pdnode-" + std::to_string(id_++); }

195 196
  std::vector<std::unique_ptr<PDNode>> nodes_;
  std::vector<edge_t> edges_;
197 198
  std::unordered_map<std::string, PDNode*> node_map_;
  static size_t id_;
199 200 201
};

/*
202
 * GraphPatternDetector helps to detect the specific patterns in the graph.
203 204 205 206 207 208 209 210 211 212 213
 * Input a pattern, output a list of the matched subgraphs/nodes.
 * This helper can be used to support fuse(conv+batchnorm => batchnorm e.g.).
 *
 * The algorithm has three phases:
 *   1. Mark the nodes that match the defined PDNodes in a PDPattern,
 *   2. Extend a PDNode to subgraphs by deducing the connection relation defined
 *      in PAPattern(the edges),
 *   3. Get the filtered subgraphs and treat them with a pre-defined handler.
 *
 * Usage:
 *    // Create a detector
214
 *    GraphPatternDetector detector;
215 216 217 218 219 220 221 222
 *    // Define the detector's pattern, by adding PDNode and define the edges.
 *    auto* node0 = detector.mutable_pattern().AddNode(...)
 *    auto* node1 = detector.mutable_pattern().AddNode(...)
 *    node0->teller = some lambda.
 *    node1->teller = some lambda.
 *    detector.mutable_pattern().AddEdge(node0, node1);
 *    // Create an handler, to define the behavior of treating the filtered
 *    // subgraphs that comply with the patterns.
223
 *    GraphPatternDetector::handle_t handler = some labmda
224 225 226
 *    // Execute the detector.
 *    detector(&graph, handler);
 */
227
class GraphPatternDetector {
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
 public:
  using subgraph_t = std::unordered_map<PDNode*, Node*>;

  // Operate on the detected pattern.
  using handle_t =
      std::function<void(const subgraph_t& /*hitted pattern*/, Graph*)>;

  void operator()(Graph* graph, handle_t handler);

  const PDPattern& pattern() const { return pattern_; }
  PDPattern* mutable_pattern() { return &pattern_; }

 private:
  // Mark the nodes that fits the pattern.
  bool MarkPDNodesInGraph(const ir::Graph& graph);

  // Detect all the pattern and output the hit records.
  std::vector<subgraph_t> DetectPatterns();

  // Remove duplicate patterns.
  void UniquePatterns(std::vector<subgraph_t>* subgraphs);

  // Remove overlapped match subgraphs, when overlapped, keep the previous one.
Y
Yan Chunwei 已提交
251 252
  // The intermediate PDNodes will be removed, so can't shared by multiple
  // patterns.
253 254
  void RemoveOverlappedMatch(std::vector<subgraph_t>* subgraphs);

Y
Yan Chunwei 已提交
255 256 257
  // Validate whether the intermediate nodes are linked by external nodes.
  void ValidateByNodeRole(std::vector<subgraph_t>* subgraphs);

258 259 260 261 262 263 264 265 266 267 268 269
#ifdef PADDLE_WITH_TESTING
  FRIEND_TEST(GraphPatternDetecter, MarkPDNodesInGraph);
  FRIEND_TEST(GraphPatternDetecter, DetectPatterns);
#endif

 private:
  using hit_rcd_t =
      std::pair<Node* /*node in graph*/, PDNode* /*node in pattern*/>;
  PDPattern pattern_;
  std::unordered_map<const PDNode*, std::unordered_set<Node*>> pdnodes2nodes_;
};

270 271
// some helper methods.

272 273 274 275 276
// Tell if a var links to an Op
bool VarLinksToOp(Node* node, const std::string& op_type);

// Tell if an op links to a var
bool VarLinksFromOp(Node* node, const std::string& op_type);
277 278

// Check whether a var node is a op node's nth input.
279
bool IsNthInput(Node* var, Node* op, const std::string& argument, size_t nth);
280

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
// Tell whether a var node is a op node's nth output.
bool IsNthOutput(Node* var, Node* op, const std::string& argument, size_t nth);

// Graph safely remove some nodes, will automatically clean up the edges.
void GraphSafeRemoveNodes(Graph* graph,
                          const std::unordered_set<const Node*>& nodes);

// Some pre-defined patterns those can be reused in multiple passes.
namespace patterns {

// FC with bias
// op: mul + elementwise_add
// named nodes:
// mul, elementwise_add
// w, mul_out, bias, fc_out
PDNode* FC(PDPattern* pattern, const std::string& name_scope, PDNode* x,
           bool with_bias);

PDNode* LSTM(PDPattern* pattern, const std::string& name_scope, PDNode* x);

T
tensor-tang 已提交
301 302
PDNode* GRU(PDPattern* pattern, const std::string& name_scope, PDNode* x);

303
}  // namespace patterns
304

305 306 307 308
#define IR_NODE_LINK_TO(a, b) \
  a->outputs.push_back(b);    \
  b->inputs.push_back(a);

309 310 311
}  // namespace ir
}  // namespace framework
}  // namespace paddle