merge_ids_op.cc 3.5 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/merge_ids_op.h"

namespace paddle {
namespace operators {

class MergeIdsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Ids", "(LoDTensor) the input ids with shape{batch_num, 1}");
    AddInput("X",
             "(LoDTensor) the input tensor with shape{batch_num, N}, N is the "
             "size of embedding table")
        .AsDuplicable();
    AddOutput("Out", "(LoDTensor) The merged outputs of the input tensors.");

    AddComment(R"DOC(
Merge multi LoDTensor's into one according to Ids's shard num.
The values in the input LoDTensor are lookuped from the output of splite_ids_op
Example:
  Input:
    Ids = [1,2,3,4,5,6]
    X0 = [[0.1 0.2]   # 3
          [0.2 0.3]]  # 6
    X1 = [[0.3 0.4]   # 1
          [0.4 0.5]]  # 4
    X2 = [[0.5 0.6]   # 2
          [0.6 0.7]]  # 5

  Output:
    Out = [[0.3 0.4]  # 1
           [0.5 0.6]  # 2
           [0.1 0.2]  # 3
           [0.4 0.5]  # 4
           [0.6 0.7]  # 5
           [0.2 0.3]] # 6
)DOC");
  }
};

class MergeIdsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Ids"), "MergeIdsOp must has input Ids.");
    PADDLE_ENFORCE(ctx->HasInputs("X"), "MergeIdsOp must has input X.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "MergeIdsOp must has output Out.");

    auto ids_var_type = ctx->GetInputsVarType("Ids").front();
    auto ids_dims = ctx->GetInputDim("Ids");
    if (ids_var_type == framework::proto::VarType::LOD_TENSOR) {
      PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
      PADDLE_ENFORCE_EQ(ids_dims[1], 1);
    }
    auto x_var_type = ctx->GetInputsVarType("X");
    for (auto &var_type : x_var_type) {
      PADDLE_ENFORCE_EQ(var_type, framework::proto::VarType::LOD_TENSOR,
                        "input X only support lod tensors");
    }
    ctx->ShareLoD("Ids", "Out");
  }
Q
qiaolongfei 已提交
76 77 78 79 80 81 82 83 84

 private:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(
            ctx.MultiInput<framework::Tensor>("X").front()->type()),
        ctx.GetPlace());
  }
Q
qiaolongfei 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
};

class MergeIdsOpInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
    auto *input_var = block->Var(op_desc.Input("Ids")[0]);
    for (auto &out_var : op_desc.Output("Out")) {
      block->Var(out_var)->SetType(input_var->GetType());
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(merge_ids, ops::MergeIdsOp, ops::MergeIdsOpMaker,
                  ops::MergeIdsOpInferVarType);
REGISTER_OP_CPU_KERNEL(
Q
qiaolongfei 已提交
105
    merge_ids, ops::MergeIdsOpKernel<paddle::platform::CPUPlace, float>);