utils.py 48.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import ast
18
import astor
19 20
import atexit
import copy
21
import collections
22
from paddle.utils import gast
23 24 25 26
import inspect
import os
import six
import tempfile
27
import textwrap
28
import numpy as np
29

30
import paddle
31
from paddle.fluid import unique_name
32
from paddle.fluid.data_feeder import convert_dtype
33
from paddle.fluid import core
34 35
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers import assign
36 37
import collections
from functools import reduce
38

39 40 41 42 43
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
PADDLE_MODULE_PREFIX = 'paddle.'
DYGRAPH_MODULE_PREFIX = 'paddle.fluid.dygraph'
DYGRAPH_TO_STATIC_MODULE_PREFIX = 'paddle.fluid.dygraph.dygraph_to_static'
44 45 46
GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
ARGS_NAME = '__args'
47 48
# NOTE(liym27): Please use `getattr(ast_node, ORIGI_INFO)` instead of . operation to get the original information of ast node.
ORIGI_INFO = "Original information of source code for ast node."
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

class BaseNodeVisitor(gast.NodeVisitor):
    """
    Implement customized NodeVisitor inherited from gast.NodeVisitor. 
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
# imp is deprecated in python3
from importlib.machinery import SourceFileLoader

dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}

FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
87 88
FOR_ITER_TARGET_PREFIX = '__for_loop_iter_target'
FOR_ITER_ITERATOR_PREFIX = '__for_loop_iter_iterator'
89 90 91 92 93 94 95 96 97 98 99 100 101
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'

# FullArgSpec is valid from Python3. Defined a Namedtuple to
# to make it available in Python2.
FullArgSpec = collections.namedtuple('FullArgSpec', [
    'args', 'varargs', 'varkw', 'defaults', 'kwonlyargs', 'kwonlydefaults',
    'annotations'
])


102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

     Note: 
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
           size. For example, it is useful to set changeable batch size as "None" 
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in six.moves.range(len(shape)):
        if shape[i] is None:
            shape[i] = -1

137 138 139 140 141 142 143 144
    return helper.create_global_variable(name=name,
                                         shape=shape,
                                         dtype=dtype,
                                         type=core.VarDesc.VarType.LOD_TENSOR,
                                         stop_gradient=True,
                                         lod_level=lod_level,
                                         is_data=True,
                                         need_check_feed=False)
145

146

147 148 149 150 151 152
def create_undefined_var_like(variable):
    """ create a undefined var with the same shape and dtype like varaible.
    """
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_NO_VALUE_MAGIC_NUM
    var = data_layer_not_check(unique_name.generate("undefined_var"),
                               variable.shape, variable.dtype)
153 154 155 156
    var.stop_gradient = False
    helper = LayerHelper('create_undefined_var_like', **locals())
    saved_block_ids = helper.main_program.current_block_idx
    helper.main_program.current_block_idx = 0
157
    assign(RETURN_NO_VALUE_MAGIC_NUM, var)
158
    helper.main_program.current_block_idx = saved_block_ids
159
    return var
160

161

162 163 164 165
def create_undefined_variable():
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_NO_VALUE_MAGIC_NUM
    var = data_layer_not_check(unique_name.generate("undefined_var"), [1],
                               "float64")
166
    var.stop_gradient = False
167 168 169 170
    # the variable is created in block(0), we append assign in block(0) either.
    helper = LayerHelper('create_undefined_variable', **locals())
    saved_block_ids = helper.main_program.current_block_idx
    helper.main_program.current_block_idx = 0
171
    assign(RETURN_NO_VALUE_MAGIC_NUM, var)
172
    helper.main_program.current_block_idx = saved_block_ids
173
    return var
174 175


176 177 178 179 180 181 182 183 184 185
class UndefinedVar:

    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
            "local variable '{}' should be created before using it.")


186 187 188 189 190 191
class Dygraph2StaticException(Exception):

    def __init__(self, message):
        super().__init__(message)


192 193 194 195 196 197 198
def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


199 200 201 202 203
def getfullargspec(target):
    if hasattr(inspect, "getfullargspec"):
        return inspect.getfullargspec(target)
    else:
        argspec = inspect.getargspec(target)
204 205 206 207 208 209 210
        return FullArgSpec(args=argspec.args,
                           varargs=argspec.varargs,
                           varkw=argspec.keywords,
                           defaults=argspec.defaults,
                           kwonlyargs=[],
                           kwonlydefaults=None,
                           annotations={})
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232


def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
    fullargspec = getfullargspec(function)
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
        default_kwarg_names = arg_names[-len(default_values):]
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
233 234 235 236 237 238 239 240 241
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
    fullargspec = getfullargspec(function)
    varargs = fullargspec.varargs
    return varargs


242 243 244 245 246 247 248 249
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

250
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
251
    """
252
    if isinstance(x, (tuple, list, set)):
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

270

271 272 273 274 275 276 277
def _is_api_in_module_helper(obj, module_prefix):
    m = inspect.getmodule(obj)
    return m is not None and m.__name__.startswith(module_prefix)


def is_api_in_module(node, module_prefix):
    assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
278 279 280 281 282 283 284 285

    # Python can have gast.Call as function, for example: covert_call(func)(x)
    # We only check the most outside function
    func_node = node.func
    while isinstance(func_node, gast.Call):
        func_node = func_node.func

    func_str = astor.to_source(gast.gast_to_ast(func_node)).strip()
286
    try:
287 288 289 290 291
        # TODO(liym27):
        #  Consider a better to import modules like:
        #  source_file = inspect.getfile(dyfunc)
        #  import_statements = ImportVisitor(source_file).transform()
        #  import_str = "".join(import_statements)
292
        import paddle
L
liym27 已提交
293
        import paddle.fluid as fluid
294
        import paddle.fluid.dygraph as dygraph
L
liym27 已提交
295
        import paddle.fluid.layers as layers
296
        import paddle.jit.dy2static as _jst
297

298
        from paddle.fluid.dygraph import to_variable
299 300
        from paddle import to_tensor

301 302
        return eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, module_prefix))
303
    except Exception:
304 305 306 307
        return False


def is_dygraph_api(node):
308

309
    # Note: A api in module dygraph_to_static is not a real dygraph api.
310
    if is_api_in_module(node, DYGRAPH_TO_STATIC_MODULE_PREFIX):
311 312
        return False

313 314
    # TODO(liym27): A better way to determine whether it is a dygraph api.
    #  Consider the decorator @dygraph_only
315
    return is_api_in_module(node, DYGRAPH_MODULE_PREFIX)
316 317 318


def is_paddle_api(node):
319 320 321 322 323 324
    return is_api_in_module(node, PADDLE_MODULE_PREFIX)


def is_paddle_func(func):
    m = inspect.getmodule(func)
    return m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
325 326 327 328 329 330 331 332 333 334 335 336 337 338


# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
def is_numpy_api(node):
    assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
    func_str = astor.to_source(gast.gast_to_ast(node.func))
    try:
        import numpy as np
        module_result = eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, "numpy"))
        # BUG: np.random.uniform doesn't have module and cannot be analyzed
        # TODO: find a better way
        if not module_result:
            return func_str.startswith("numpy.") or func_str.startswith("np.")
339
    except Exception:
340 341 342
        return False


L
liym27 已提交
343 344 345
def is_control_flow_to_transform(node,
                                 static_analysis_visitor=None,
                                 var_name_to_type=None):
346
    """
L
liym27 已提交
347 348
    Determines whether the node is a PaddlePaddle control flow statement which needs to
    be transformed into a static graph control flow statement.
349 350 351
    """
    assert isinstance(node, gast.AST), \
        "The type of input node must be gast.AST, but received %s." % type(node)
352 353 354
    visitor = IsControlFlowVisitor(node,
                                   static_analysis_visitor,
                                   node_var_type_map=var_name_to_type)
L
liym27 已提交
355 356
    need_to_transform = visitor.transform()
    return need_to_transform
357 358


359 360
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
361
    func_src = astor.to_source(gast.gast_to_ast(node.func))
362 363 364 365 366 367 368 369 370 371 372 373
    import paddle.fluid as fluid
    full_args = eval("inspect.getargspec({})".format(func_src))
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
374 375 376
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
            "to static graph at present.".format(dygraph_class))
377 378 379 380 381 382 383 384 385 386


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
387 388
            gast.keyword(arg="num_flatten_dims",
                         value=gast.Constant(value=-1, kind=None)))
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

407 408 409 410 411 412 413 414 415
    node.func = gast.Attribute(attr=static_api,
                               ctx=gast.Load(),
                               value=gast.Attribute(attr='layers',
                                                    ctx=gast.Load(),
                                                    value=gast.Name(
                                                        ctx=gast.Load(),
                                                        id='fluid',
                                                        annotation=None,
                                                        type_comment=None)))
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

436
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
437 438 439
    import paddle.fluid as fluid
    if method_name == "__init__" or eval(
            "issubclass({}, fluid.dygraph.Layer)".format(class_src)):
440 441
        full_args = eval("inspect.getargspec({}.{})".format(
            class_src, method_name))
442 443 444 445 446 447 448 449 450 451 452
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
453 454 455


def create_api_shape_node(tensor_shape_node):
456 457 458 459 460
    assert isinstance(tensor_shape_node,
                      (gast.Name, gast.Attribute, gast.Subscript))

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
461
            func=gast.parse('paddle.shape').body[0].value,
462 463 464
            args=[tensor_shape_node],
            keywords=[])
        return api_shape_node
465 466 467

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
468
            func=gast.parse('paddle.shape').body[0].value,
469 470 471 472 473 474 475 476
            args=[tensor_shape_node.value],
            keywords=[])
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
477 478


479
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
480 481
    return gast.parse('%s = paddle.full(%s, "%s", %s)' %
                      (name, str(shape), str(value), dtype))
482 483 484 485 486 487 488 489 490


def get_attribute_full_name(node):
    assert isinstance(
        node,
        gast.Attribute), "Input non-Attribute node to get attribute full name"
    return astor.to_source(gast.gast_to_ast(node)).strip()


491
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
492
    """
493 494 495 496 497 498 499
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
500 501 502 503
    """
    if isinstance(name_ids, six.string_types):
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
504 505 506
        raise TypeError(
            'name_ids must be list or tuple or set, but received %s' %
            type(type(name_ids)))
507 508 509 510 511 512 513 514 515 516

    def create_node_for_name(name):
        if '.' not in name:
            return gast.Name(id=name,
                             ctx=ctx,
                             annotation=None,
                             type_comment=None)
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
517
    if len(gast_names) == 1 and not gen_tuple_if_single:
518 519 520 521 522 523 524 525 526 527 528 529 530
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
531 532
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
533 534
    else:
        nodes.append(gast.Return(value=None))
535 536 537 538 539 540
    func_def_node = gast.FunctionDef(name=name,
                                     args=input_args,
                                     body=nodes,
                                     decorator_list=[],
                                     returns=None,
                                     type_comment=None)
541 542 543
    return func_def_node


544 545 546 547 548 549 550 551
def index_in_list(array_list, item):
    try:
        return array_list.index(item)
    except ValueError:
        # Item not in array_list
        return -1


552 553 554 555 556 557 558 559 560
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


561
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
562 563
    """
    Transform modified AST of decorated function into python callable object.
564 565
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
566
    """
567

568
    def remove_if_exit(filepath):
569 570 571
        if os.path.exists(filepath):
            os.remove(filepath)

572
    source = ast_to_source_code(ast_root)
573
    source = _inject_import_statements() + source
574

575 576 577 578
    f = tempfile.NamedTemporaryFile(mode='w',
                                    suffix='.py',
                                    delete=False,
                                    encoding='utf-8')
579 580 581 582 583
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

    if delete_on_exit:
584 585
        atexit.register(lambda: remove_if_exit(f.name))
        atexit.register(lambda: remove_if_exit(f.name[:-3] + ".pyc"))
586

T
tianshuo78520a 已提交
587
    module = SourceFileLoader(module_name, f.name).load_module()
588
    func_name = dyfunc.__name__
W
WeiXin 已提交
589 590 591 592 593 594 595 596
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
        callable_func = getattr(module, '__i_m_p_l__')
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
597 598 599
        raise ValueError(
            'Function: %s doesn\'t exist in the Module transformed from AST.' %
            func_name)
600 601 602 603 604 605 606 607
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


608 609
def _inject_import_statements():
    import_statements = [
610
        "import paddle", "from paddle import Tensor",
611
        "import paddle.fluid as fluid", "import paddle.jit.dy2static as _jst",
612 613
        "from typing import *", "import numpy as np", "import warnings",
        "warnings.filterwarnings('ignore', category=DeprecationWarning)"
614 615 616 617
    ]
    return '\n'.join(import_statements) + '\n'


618 619 620 621 622
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
623

624
    for k, v in six.iteritems(src_globals):
625 626 627
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
628 629


630 631 632 633 634 635
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
636 637
            "The type of 'function' should be a function or method, but received {}."
            .format(type(function).__name__))
638
    source_code_list, _ = inspect.getsourcelines(function)
639
    # Replace comments with blank lines so that error messages are not misplaced
640
    source_code_list = [
641 642
        line if not line.lstrip().startswith('#') else '\n'
        for line in source_code_list
643 644
    ]
    source_code = ''.join(source_code_list)
645 646 647 648 649 650
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


651 652
def ast_to_source_code(ast_node):
    """
653
    Transforms ast node into source code.
654 655 656 657 658 659 660
    """
    if not isinstance(ast_node, (gast.AST, ast.AST)):
        raise TypeError(
            "Type of ast_root should be gast.AST or ast.AST, but received %s." %
            type(ast_node))
    if isinstance(ast_node, gast.AST):
        ast_node = gast.gast_to_ast(ast_node)
661 662 663 664 665 666

    # Do not wrap lines even if they are too long
    def pretty_source(source):
        return ''.join(source)

    source_code = astor.to_source(ast_node, pretty_source=pretty_source)
667
    return source_code
L
liym27 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690


def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
    is_compare_node = isinstance(node, (gast.Compare, gast.BoolOp, gast.UnaryOp,
                                        gast.For, gast.If, gast.While))
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
691 692 693
            if (isinstance(child, gast.Constant)
                    and child.value is None) or (isinstance(child, gast.Name)
                                                 and child.id == 'None'):
L
liym27 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
711
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
712
        6. calls `range` function in `for` statement and the argument of range is Tensor.
713 714
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

    def __init__(self,
                 ast_node,
                 static_analysis_visitor=None,
                 node_var_type_map=None):
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
            ast_node)
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            from .static_analysis import StaticAnalysisVisitor
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
        self.node_to_wrapper_map = self.static_analysis_visitor.get_node_to_wrapper_map(
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
750 751 752 753 754 755 756 757
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
758 759 760 761 762 763 764 765 766
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
767 768 769 770 771 772 773 774 775 776 777 778 779 780
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
                if node.iter.func.id == "range" or node.iter.func.id == "enumerate":
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
781 782
            else:
                return
783 784 785
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
786
        else:
L
liym27 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
825
            self.visit(child)
L
liym27 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
        from paddle.fluid.dygraph.dygraph_to_static.static_analysis import NodeVarType

        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
            if name_id and isinstance(name_id, six.string_types):
                var_type = self.node_var_type_map.get(name_id, None)
875
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
876 877
                    return True
        # if not found, look up the node_to_wrapper_map by node.
878
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
879
        if wrapper_node is not None:
880
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
881 882 883 884 885 886
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
887 888


889 890 891 892 893 894 895 896 897 898 899 900 901 902
# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
    while (_is_wrapped(unwrapped_f)):
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
903 904


C
Chen Weihang 已提交
905
def input_specs_compatible(src_input_specs, desired_input_specs):
906 907 908 909
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
910 911 912 913
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
914 915
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
916 917
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
918
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
919 920 921 922
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
923 924 925 926 927 928 929 930
        for (src_spec, desired_spec) in zip(src_input_specs,
                                            desired_input_specs):
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
                    desired_spec, paddle.static.InputSpec):
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
931 932
                    return False

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
960 961

    return True
962

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

def slice_is_num(slice_node):
    # A slice_node.slice can be a:
    # (1) ast.Index, which is a simple number such as [1], [-2]
    # (2) ast.Slice, which is represented by bounds such as [2:-1]
    # (3) ast.Tuple, which includes the above two cases such as [2:-1, 1]
    # If slice node is case (1), return True, Otherwise, return False.
    #
    # NOTE: In (1) case, when gast>=0.4.0, gast.Index is not used, which is replaced
    # other gast node such as gast.Constant, gast.Name, gast.UnaryOp and so on.
    # Considering the compatibility of gast, here use ast note to check whether the
    # node is a num. For more details, please visit https://github.com/serge-sans-paille/gast

    assert isinstance(slice_node, gast.Subscript)
    slice_node_str = ast_to_source_code(slice_node).strip()
    ast_node = ast.parse(slice_node_str).body[0].value

    if isinstance(ast_node.slice, (ast.Tuple, ast.Slice)):
        return False

    if isinstance(ast_node.slice, ast.Index):
        return True

    return False
1008 1009


1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
class NameScope:

    def __init__(self):
        """ 
            A NameScope is a object which manager all the variable names. 
            only FunctionDef and Controlflow node will have a namescope property.

            type can be "function" and "controlflow"

            we don't analyze the read only variable because they don't affect the analysis.
        """
        self.globals = set()
        self.nonlocals = set()
        self.args = set()
        self.father = None  # point to the nearest function name scope.
        self.w_vars = set()  # all qualified + normal names been stored
1026 1027 1028
        self.created = set()  # useful for control flow compatibility
        # may be remove later.
        self.push_pop_vars = set()  # we call push and pop in the vars
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

    def set_father(self, father):
        self.father = father

    def existed_vars(self):
        """ vars existing in current scope. 
            they must not contain qualified names.
        """
        local_vars = self.w_vars - self.globals - self.nonlocals - self.args
        return set(filter(lambda x: '.' not in x, local_vars))

    def created_vars(self):
        return self.created

    def modified_vars(self):
        # may be globals / non-locals / args / qualified names and created_vars
        return self.w_vars

1047 1048 1049
    def variadic_length_vars(self):
        return self.push_pop_vars

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    def control_flow_vars(self):
        valid_names = self.w_vars
        tmp = self.father.global_vars & valid_names,
        return {"global": tmp, "nonlocal": self.w_vars - tmp}

    def global_vars(self):
        return self.globals

    def merge_from(self, name_scope):
        self.globals |= name_scope.globals
        self.nonlocals |= name_scope.nonlocals
        self.args |= name_scope.args
        self.w_vars |= name_scope.w_vars
1063
        self.push_pop_vars |= name_scope.push_pop_vars
1064 1065 1066 1067 1068 1069


class FunctionNameLivenessAnalysis(gast.NodeVisitor):
    """ analyze the liveness of a function.

        every variables stored in this scope will be collected,
1070 1071
        in addition with global/nonlocal information and 
        push_pop information.
1072 1073 1074 1075

        1. global variable is stored in node.var_globals.
        2. nonlocal variable is stored in node.var_nonlocals.
        3. arguments is stored in node.var_args.
1076 1077 1078 1079 1080 1081
        4. if a variable's push and pop attribute is called, 
           it will be collected in push_pop_vars. They are
           used for transformation to tensor_array.
           NOTE: push_pop_vars **may not** in w_vars. 
           a.push(0) don't modify the variable a, but the content
           of a.
1082 1083 1084 1085 1086 1087 1088 1089 1090

        For example:

        def func(*args, **kargs):
            a = 12
            global i,j
            nonlocal x,y
            print(a)
            i = k
1091 1092
            b = []
            c = [1,2,3]
1093 1094
            for m in range(10):
                q = 12
1095 1096
                b.push(1)
                c.pop()
1097 1098 1099 1100 1101 1102 1103
        
        After this visitor we have: 
        # node is the FunctionDef node with name: "func"
        node.pd_scope = NameScope(
            globals = ['i', 'j'],
            nonlocals = ['x', 'y'],
            args = ['args', 'kargs'], 
1104 1105
            wr_vars = ['a', 'i', 'q', 'm', 'c', 'b']
            push_pop_vars = ['b', 'c']
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
        )
    """

    def __init__(self, root_node):
        self.scope_node_stack = []  # controlflow, functiondef node
        self.visit(root_node)

    def _reset_name_scope(self, node):
        # always reset the node as empty namescope.
        setattr(node, "pd_scope", NameScope())

    def _get_name_scope(self, node):
        if not hasattr(node, "pd_scope"):
            setattr(node, "pd_scope", NameScope())
        return node.pd_scope

    def _current_name_scope(self):
        return self._get_name_scope(self.scope_node_stack[-1])

    def _father_name_scope(self):
        if len(self.scope_node_stack) == 1: return None
        return self._get_name_scope(self.scope_node_stack[-2])

    def _nearest_function_scope(self):
        if len(self.scope_node_stack) == 1: return None
        for node in self.scope_node_stack[-2::-1]:
            if isinstance(node, gast.FunctionDef):
                return self._get_name_scope(node)

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    def visit_ListComp(self, node):
        """ [ i for i in range(10) ]
            In this case, `i` will not created in FunctionScope. 
            We don't collect `i` by not calling generic_visit.
        """
        pass

    def visit_DictComp(self, node):
        """ the same as ListComp.
        """
        pass

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
    def visit_Name(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            self._current_name_scope().w_vars.add(node.id)

    def visit_FunctionDef(self, node):

        def pre_func():
            self._current_name_scope().args |= set(
                self._get_argument_names(node))

        def post_func():
1160
            """ NOTE: why we need merge w_vars and push_pop_vars here ? 
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
                because we do ifelse_transformer after loop_transformer. Loops will changed into functioons. but we know this function will be called in if. so we add w_vars to father function scope.
            """
            from paddle.fluid.dygraph.dygraph_to_static.loop_transformer import WHILE_CONDITION_PREFIX, WHILE_BODY_PREFIX, FOR_CONDITION_PREFIX, FOR_BODY_PREFIX
            from paddle.fluid.dygraph.dygraph_to_static.ifelse_transformer import TRUE_FUNC_PREFIX, FALSE_FUNC_PREFIX
            control_flow_function_def = [
                WHILE_BODY_PREFIX, WHILE_BODY_PREFIX, FOR_CONDITION_PREFIX,
                FOR_BODY_PREFIX, TRUE_FUNC_PREFIX, FALSE_FUNC_PREFIX
            ]

            def is_control_flow_def_node():
                for prefix in control_flow_function_def:
                    if node.name.startswith(prefix): return True
                return False

            if self._father_name_scope() and is_control_flow_def_node():
                self._father_name_scope().w_vars |= self._current_name_scope(
                ).w_vars
1178 1179
                self._father_name_scope(
                ).push_pop_vars |= self._current_name_scope().push_pop_vars
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

        self._visit_scope_node(node, pre_func, post_func)

    def _visit_scope_node(self, node, pre_func, post_func):
        """ scope node main visit logic.
            pre_func and post_func is callbacks
        """
        self._reset_name_scope(node)
        self.scope_node_stack.append(node)
        self._current_name_scope().father = self._nearest_function_scope()
        if pre_func: pre_func()
        self.generic_visit(node)
        if post_func: post_func()
        self.scope_node_stack.pop()

    def _visit_controlflow_node(self, node):

        def post_func():
            self._father_name_scope().merge_from(self._current_name_scope())
1199 1200
            self._nearest_function_scope().merge_from(
                self._current_name_scope())
1201 1202
            self._current_name_scope().created = self._nearest_function_scope(
            ).existed_vars() - node.before_created
1203 1204 1205
            # gather created vars into father and used in CreateUndefinedVarTransform
            self._nearest_function_scope().created |= self._current_name_scope(
            ).created
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

        def pre_func():
            setattr(node, "before_created",
                    self._nearest_function_scope().existed_vars())

        self._visit_scope_node(node, pre_func, post_func)

    def visit_For(self, node):
        self._visit_controlflow_node(node)

    def visit_While(self, node):
        self._visit_controlflow_node(node)

    def visit_If(self, node):
        self._visit_controlflow_node(node)

    def visit_Global(self, node):
        self._current_name_scope().globals |= set(node.names)

    def visit_Nonlocal(self, node):
        self._current_name_scope().nonlocals |= set(node.names)

    def visit_Attribute(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            name = ast_to_source_code(node).strip()
            self._current_name_scope().w_vars.add(name)

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    def visit_Call(self, node):
        self.generic_visit(node)
        if not isinstance(node.func, gast.Attribute):
            return
        variadic_length_method = ['append', 'pop']
        if node.func.attr not in variadic_length_method:
            return
        # we don't treat push and pop as a write operator. such as a[i]=10 is not modify a.
        name = ast_to_source_code(node.func.value).strip()
        self._current_name_scope().push_pop_vars.add(name)

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    def _get_argument_names(self, node):
        """ get all arguments name in the functiondef node.
            this node is local to the function and shouldn't 
            be created.
        """
        assert isinstance(
            node, gast.FunctionDef), "Input node is not function define node"
        names = [a for a in node.args.args]
        names.append(node.args.vararg)
        names.append(node.args.kwarg)
        names = [i.id for i in names if i is not None]
        return names


1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
        """.format(func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX))
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
    mapped = list(filter(lambda n: '.' not in n, names))
    nonlocal_names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
1281 1282 1283 1284 1285 1286
    if not names:
        return empty_node()
    if not nonlocal_names:
        nonlocal_vars = "\n"
    else:
        nonlocal_vars = "nonlocal " + ",".join(nonlocal_names)
1287 1288
    template = """
    def {func_name}():
1289
        {nonlocal_vars}
1290
        return {vars},
1291 1292 1293
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
1294
        nonlocal_vars=nonlocal_vars,
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
        vars=",".join(names))
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
        """.format(func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
                   args=ARGS_NAME)
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
    mapped = list(filter(lambda n: '.' not in n, names))
    nonlocal_names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
1321 1322 1323 1324 1325 1326
    if not names:
        return empty_node()
    if not nonlocal_names:
        nonlocal_vars = "\n"
    else:
        nonlocal_vars = "nonlocal " + ",".join(nonlocal_names)
1327 1328
    template = """
    def {func_name}({args}):
1329
        {nonlocal_vars}
1330
        {vars}, = {args}
1331 1332 1333 1334
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
1335
        nonlocal_vars=nonlocal_vars,
1336 1337 1338 1339
        vars=",".join(names))
    return gast.parse(textwrap.dedent(func_def)).body[0]


1340
def create_nonlocal_stmt_nodes(names):
1341 1342 1343 1344 1345 1346
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
    names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
1347 1348
    if not names:
        return []
1349
    func_code = "nonlocal {}".format(','.join(names))
1350
    return [gast.parse(func_code).body[0]]
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404


class GetterSetterHelper:
    """ we have two classes of names in setter and getter function: 
        w_vars(loop_vars) + push_pop_vars
        To simplify the setter logic in convert_while and convert_cond,
        we extract the helper class here.
    """

    def __init__(self, getter_func, setter_func, *name_lists):
        name_lists = map(lambda x: [] if x is None else x, name_lists)
        name_sets = map(lambda x: set(x), name_lists)
        self._union = list(reduce(lambda x, y: x | y, name_sets, set()))
        self._union.sort()
        self.getter = getter_func
        self.setter = setter_func
        self.name2id = {name: idx for idx, name in enumerate(self._union)}

    def union(self):
        return self._union

    def get(self, names):
        if names is None: names = []
        vars = self.getter()
        if vars is None: return tuple()
        for n in names:
            assert n in self.name2id, "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys())
        return tuple(map(lambda n: vars[self.name2id[n]], names))

    def set(self, names, values):
        if names is None: names = []
        if values is None: values = []
        vars = self.getter()
        if vars is None: return
        for n in names:
            assert n in self.name2id, "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys())
        vars = list(vars)
        indices = list(map(lambda n: self.name2id[n], names))
        for i, v in zip(indices, values):
            vars[i] = v
        self.setter(vars)


def create_name_str(name_ids):
    """
    Return "('x', 'y')" for [x, y]
    """
    if not name_ids:
        return 'None'

    names_str = ["'%s'" % name for name in name_ids]
    return "(%s, )" % ','.join(names_str)