test_PyDataProvider2.py 3.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import random

Z
zhangjinchao01 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
from paddle.trainer.PyDataProvider2 import *


@provider(input_types=[dense_vector(200, seq_type=SequenceType.NO_SEQUENCE)])
def test_dense_no_seq(setting, filename):
    for i in xrange(200):
        yield [(float(j - 100) * float(i + 1)) / 200.0 for j in xrange(200)]


@provider(input_types=[integer_value(200, seq_type=SequenceType.NO_SEQUENCE)])
def test_index_no_seq(setting, filename):
    for i in xrange(200):
        yield i


def test_init_hooker(setting, value, **kwargs):
    setting.value = value


@provider(input_types=[dense_vector(20, seq_type=SequenceType.NO_SEQUENCE)],
          init_hook=test_init_hooker)
def test_init_hook(setting, filename):
    for i in xrange(200):
        yield setting.value


@provider(
44 45
    input_types=[
        sparse_binary_vector(30000, seq_type=SequenceType.NO_SEQUENCE)])
Z
zhangjinchao01 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
def test_sparse_non_value_no_seq(setting, filename):
    for i in xrange(200):
        yield [(i + 1) * (j + 1) for j in xrange(10)]


@provider(input_types=[sparse_vector(30000, seq_type=SequenceType.NO_SEQUENCE)])
def test_sparse_value_no_seq(setting, filename):
    for i in xrange(200):
        yield [((i + 1) * (j + 1), float(j) / float(i + 1)) for j in xrange(10)]


@provider(input_types=[integer_value(200, seq_type=SequenceType.SEQUENCE)])
def test_index_seq(setting, filename):
    for i in xrange(200):
        yield range(i + 1)


@provider(input_types=[index_slot(200, seq_type=SequenceType.SUB_SEQUENCE)])
def test_index_sub_seq(setting, filename):
    def gen_sub_seq(l):
        l += 1
        for j in xrange(l):
            yield range(j + 1)

    for i in xrange(200):
        yield list(gen_sub_seq(i))
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88


@provider(input_types=[index_slot(100)], min_pool_size=1000)
def test_min_pool_size(setting, filename):
    for _ in xrange(1 << 14):
        yield random.randint(0, 100 - 1)


@provider(input_types=[index_slot(100, seq_type=SequenceType.SEQUENCE)],
          can_over_batch_size=False,
          calc_batch_size=lambda x: len(x[0]))
def test_can_over_batch_size(setting, filename):
    for _ in xrange(1 << 10):
        seq_len = random.randint(0, 99)
        yield [random.randint(0, 100 - 1) for _ in xrange(seq_len)]


89
@provider(input_types={'input1':index_slot(10), 'input2': index_slot(10)})
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
def test_input_order(setting, filename):
    for _ in xrange(1000):
        yield {
            'input1': 0,
            'input2': 1
        }


@provider(input_types=[index_slot(10)],
          check=True,
          check_fail_continue=True,
          should_shuffle="123")  # also test should shuffle
def test_check(settings, filename):
    yield_good_value = False

    while not yield_good_value:
        for _ in xrange(10000):
            i = random.randint(0, 100)
            if i < 10:
                yield_good_value = True
            yield i