mixed_vector.h 7.7 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include <initializer_list>
#include <vector>

Y
Yu Yang 已提交
20 21 22 23
#include "paddle/framework/tensor.h"
#include "paddle/framework/tensor_util.h"

#include "glog/logging.h"
D
dzhwinter 已提交
24 25 26 27 28

namespace paddle {
namespace framework {

template <typename T>
Y
Yu Yang 已提交
29
class Vector {
D
dzhwinter 已提交
30
 public:
Y
Yu Yang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
  using value_type = T;

  Vector() {
    size_ = 0;
    flag_ = kDataInCPU;
  }

  explicit Vector(size_t count, const T& value = T()) {
    resize(count);
    T* ptr = begin();
    for (size_t i = 0; i < count; ++i) {
      ptr[i] = value;
    }
  }

  Vector(std::initializer_list<T> init) {
    InitByIter(init.size(), init.begin(), init.end());
  }

  template <typename U>
  Vector(const std::vector<U>& dat) {  // NOLINT
    InitByIter(dat.size(), dat.begin(), dat.end());
  }

  Vector(const Vector<T>& other) { this->operator=(other); }

  Vector<T>& operator=(const Vector<T>& other) {
    if (other.size() != 0) {
      this->InitByIter(other.size(), other.begin(), other.end());
    } else {
      size_ = 0;
      flag_ = kDataInCPU;
    }
    return *this;
  }

  Vector(Vector<T>&& other) {
    this->size_ = other.size_;
    this->flag_ = other.flag_;
    if (other.cuda_vec_.capacity()) {
      this->cuda_vec_.ShareDataWith(other.cuda_vec_);
    }
    if (other.cpu_vec_.capacity()) {
      this->cpu_vec_.ShareDataWith(other.cpu_vec_);
    }
  }
D
dzhwinter 已提交
77

Y
Yu Yang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  T& operator[](size_t i) {
    MutableCPU();
    return const_cast<T*>(cpu_vec_.data<T>())[i];
  }

  const T& operator[](size_t i) const {
    ImmutableCPU();
    return cpu_vec_.data<T>()[i];
  }

  size_t size() const { return size_; }

  T* begin() { return &this->operator[](0); }

  T* end() { return &this->operator[](size()); }

  T& front() { return *begin(); }

  T& back() {
    auto it = end();
    --it;
    return *it;
  }

  const T* begin() const { return &this->operator[](0); }
  const T* end() const { return &this->operator[](size()); }
D
dzhwinter 已提交
104

Y
Yu Yang 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118
  const T& back() const {
    auto it = end();
    --it;
    return *it;
  }

  const T& front() const { return *begin(); }

  template <typename Iter>
  void assign(Iter begin, Iter end) {
    InitByIter(end - begin, begin, end);
  }

  T* data() { return begin(); }
D
dzhwinter 已提交
119

Y
Yu Yang 已提交
120
  const T* data() const { return begin(); }
D
dzhwinter 已提交
121

Y
Yu Yang 已提交
122 123 124 125 126 127 128
  void push_back(T elem) {
    if (size_ + 1 > capacity()) {
      reserve((size_ + 1) << 1);
    }
    *end() = elem;
    ++size_;
  }
D
dzhwinter 已提交
129

Y
Yu Yang 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  void resize(size_t size) {
    if (size + 1 < capacity()) {
      size_ = size;
    } else {
      MutableCPU();
      Tensor cpu_tensor;
      platform::Place cpu = platform::CPUPlace();
      T* ptr = cpu_tensor.mutable_data<T>(
          framework::make_ddim({static_cast<int64_t>(size)}), cpu);
      const T* old_ptr =
          cpu_vec_.capacity() == 0 ? nullptr : cpu_vec_.data<T>();
      if (old_ptr != nullptr) {
        std::copy(old_ptr, old_ptr + size_, ptr);
      }
      size_ = size;
      cpu_vec_.ShareDataWith(cpu_tensor);
    }
D
dzhwinter 已提交
147 148
  }

Y
Yu Yang 已提交
149 150 151 152 153 154
  const T* CUDAData(platform::Place place) const {
    PADDLE_ENFORCE(platform::is_gpu_place(place),
                   "CUDA Data must on CUDA place");
    ImmutableCUDA(place);
    return cuda_vec_.data<T>();
  }
D
dzhwinter 已提交
155

Y
Yu Yang 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  T* CUDAMutableData(platform::Place place) {
    const T* ptr = CUDAData(place);
    flag_ = kDirty | kDataInCUDA;
    return const_cast<T*>(ptr);
  }

  template <typename It>
  void Extend(It begin, It end) {
    size_t pre_size = size_;
    resize(pre_size + (end - begin));
    T* ptr = this->begin() + pre_size;
    for (; begin < end; ++begin, ++ptr) {
      *ptr = *begin;
    }
  }

  void clear() {
    size_ = 0;
    flag_ = kDirty | kDataInCPU;
  }

  size_t capacity() const {
    return cpu_vec_.capacity() / SizeOfType(typeid(T));
  }

  void reserve(size_t size) {
    size_t pre_size = size_;
    resize(size);
    resize(pre_size);
  }

  const T* Data(platform::Place place) const {
    if (platform::is_gpu_place(place)) {
      return CUDAData(place);
    } else {
191
      return data();
Y
Yu Yang 已提交
192 193 194 195 196 197
    }
  }

  T* MutableData(platform::Place place) {
    if (platform::is_gpu_place(place)) {
      return CUDAMutableData(place);
198
    } else {
Y
Yu Yang 已提交
199
      return data();
200 201 202
    }
  }

Y
Yu Yang 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  operator std::vector<T>() const {
    std::vector<T> result;
    result.resize(size());
    std::copy(begin(), end(), result.begin());
    return result;
  }

  bool operator==(const Vector<T>& other) const {
    if (size() != other.size()) return false;
    for (auto it1 = begin(), it2 = other.begin(); it1 < end(); ++it1, ++it2) {
      if (*it1 != *it2) {
        return false;
      }
    }
    return true;
  }
D
dzhwinter 已提交
219 220

 private:
Y
Yu Yang 已提交
221 222 223 224 225 226 227 228 229 230 231
  template <typename Iter>
  void InitByIter(size_t size, Iter begin, Iter end) {
    platform::Place cpu = platform::CPUPlace();
    T* ptr = this->cpu_vec_.template mutable_data<T>(
        framework::make_ddim({static_cast<int64_t>(size)}), cpu);
    for (size_t i = 0; i < size; ++i) {
      *ptr++ = *begin++;
    }
    flag_ = kDataInCPU | kDirty;
    size_ = size;
  }
D
dzhwinter 已提交
232

Y
Yu Yang 已提交
233 234 235 236 237 238 239
  enum DataFlag { kDataInCPU = 0x01, kDataInCUDA = 0x02, kDirty = 0x10 };

  void MutableCPU() {
    if (IsInCUDA() && IsDirty()) {
      // COPY GPU Data To CPU
      Copy(cuda_vec_, platform::CPUPlace(), &cpu_vec_);
      WaitPlace(cuda_vec_.place());
D
dzhwinter 已提交
240
    }
Y
Yu Yang 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    flag_ = kDirty | kDataInCPU;
  }

  void ImmutableCUDA(platform::Place place) const {
    if (IsDirty()) {
      if (IsInCPU()) {
        Copy(cpu_vec_, boost::get<platform::CUDAPlace>(place), &cuda_vec_);
        WaitPlace(place);
        UnsetFlag(kDirty);
        SetFlag(kDataInCUDA);
      } else if (IsInCUDA() && !(place == cuda_vec_.place())) {
        framework::Tensor tmp;
        Copy(cuda_vec_, boost::get<platform::CUDAPlace>(place), &tmp);
        WaitPlace(cuda_vec_.place());
        cuda_vec_.ShareDataWith(tmp);
        // Still dirty
      } else {
        // Dirty && DataInCUDA && Device is same
        // Do nothing
      }
D
dzhwinter 已提交
261
    } else {
Y
Yu Yang 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275
      if (!IsInCUDA()) {
        // Even data is not dirty. However, data is not in CUDA. Copy data.
        Copy(cpu_vec_, boost::get<platform::CUDAPlace>(place), &cuda_vec_);
        WaitPlace(place);
        SetFlag(kDataInCUDA);
      } else if (!(place == cuda_vec_.place())) {
        framework::Tensor tmp;
        Copy(cuda_vec_, boost::get<platform::CUDAPlace>(place), &tmp);
        WaitPlace(cuda_vec_.place());
        cuda_vec_.ShareDataWith(tmp);
      } else {
        // Not Dirty && DataInCUDA && Device is same
        // Do nothing.
      }
D
dzhwinter 已提交
276 277 278
    }
  }

Y
Yu Yang 已提交
279 280 281 282 283 284
  void ImmutableCPU() const {
    if (IsDirty() &&
        !IsInCPU()) {  // If data has been changed in CUDA, or CPU has no data.
      Copy(cuda_vec_, platform::CPUPlace(), &cpu_vec_);
      WaitPlace(cuda_vec_.place());
      UnsetFlag(kDirty);
D
dzhwinter 已提交
285
    }
Y
Yu Yang 已提交
286 287
    SetFlag(kDataInCPU);
  }
D
dzhwinter 已提交
288

Y
Yu Yang 已提交
289 290
  void UnsetFlag(int flag) const { flag_ &= ~flag; }
  void SetFlag(int flag) const { flag_ |= flag; }
D
dzhwinter 已提交
291

Y
Yu Yang 已提交
292
  bool IsDirty() const { return flag_ & kDirty; }
D
dzhwinter 已提交
293

Y
Yu Yang 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
  bool IsInCUDA() const { return flag_ & kDataInCUDA; }

  bool IsInCPU() const { return flag_ & kDataInCPU; }

  static void WaitPlace(const platform::Place place) {
    if (platform::is_gpu_place(place)) {
      platform::DeviceContextPool::Instance()
          .Get(boost::get<platform::CUDAPlace>(place))
          ->Wait();
    }
  }

  mutable int flag_;
  mutable Tensor cpu_vec_;
  mutable Tensor cuda_vec_;
  size_t size_;
};
D
dzhwinter 已提交
311 312 313

}  // namespace framework
}  // namespace paddle