gather_func.h 3.8 KB
Newer Older
Z
Zhuoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <cstring>
Z
Zhuoyuan 已提交
17
#include "paddle/framework/ddim.h"
Z
Zhuoyuan 已提交
18 19 20 21 22 23
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"

/**
 * Return a new tensor from source tensor, gathered according to index
 * input[src]: type-T source Tensor
Z
Zhuoyuan 已提交
24
 * input[index]: type-int index Tensor (1-D)
Z
Zhuoyuan 已提交
25 26
 * return: output tensor
 */
Z
Zhuoyuan 已提交
27 28 29
template <typename Place, typename T>
Tensor* Gather(Tensor* src, Tensor* index) {
  // check index of shape 1-D
Z
Zhuoyuan 已提交
30
  PADDLE_ENFORCE(index->dims().size() == 1);
Z
Zhuoyuan 已提交
31
  int index_size = index->dims()[0];
Z
Zhuoyuan 已提交
32

Z
Zhuoyuan 已提交
33 34 35 36 37
  // Source shape
  auto src_dims = src->dims();
  DDim output_dims(dims_src);
  // Create a tensor of shape [index_size, dim_src[1:]]
  output_dims[0] = index_size;
Z
Zhuoyuan 已提交
38

Z
Zhuoyuan 已提交
39 40
  Tensor* New_tensor;
  float* output = nullptr;
Z
Zhuoyuan 已提交
41

Z
Zhuoyuan 已提交
42 43
  /* slice size */
  int slice_size = 1;
Z
Zhuoyuan 已提交
44
  for (size_t i = 0; i < src_dims.size(); ++i) slice_size *= src_dims[i];
Z
Zhuoyuan 已提交
45

Z
Zhuoyuan 已提交
46 47
  /* Gathering */
  if (place == CPUPlace()) {
Z
Zhuoyuan 已提交
48 49 50 51 52 53 54 55 56 57
    // init for CPU
    output = New_tensor.mutable_data<T>(output_dims, CPUPlace());
    CPUGather(
        src->data(), index->data(), slice_size, new_tensor->mutable_data());
  } else {  // GPU
    // init for GPU
    output = New_tensor.mutable_data<T>(output_dims, GPUPlace());
    /* how to specialize device??*/
    GPUGather(
        d, src->data(), index->data(), slice_size, new_tensor->mutable_data());
Z
Zhuoyuan 已提交
58 59
  }
  return New_tensor;
Z
Zhuoyuan 已提交
60 61 62
}

/* Implementation of CPU copy */
Z
Zhuoyuan 已提交
63 64 65 66 67 68
template <typename T>
void CPUGather(const T* params,
               const int* indices,
               const int slice_size,
               const int index_size,
               T* output) {
Z
Zhuoyuan 已提交
69 70
  const size_t slice_bytes = slice_size * sizeof(T);

Z
Zhuoyuan 已提交
71 72 73 74 75 76
  for (size_t i = 0; i < index_size; ++i) {
    int index_ = indices[i];
    /* copy src[index_] to output[i] */
    memcpy(
        output + i * slice_bytes, params + index_ * slice_bytes, slice_bytes);
  }
Z
Zhuoyuan 已提交
77 78 79 80 81 82
}

/* Implementation of GPU copy:
   I suppose the GPUDevice& d, contains gpu_id and thread_id
   d = cuda_stream(gpu_id_, stream_id_);
*/
Z
Zhuoyuan 已提交
83
template <typename T>
Z
Zhuoyuan 已提交
84
void GPUGather(const GPUDevice& d,
Z
Zhuoyuan 已提交
85 86 87 88 89
               const T* src,
               const int* index,
               const int slice_size,
               const int index_size,
               T* output) {
Z
Zhuoyuan 已提交
90 91
  int block_count = slice_size * index_size;
  int thread_per_block = 1024;
Z
Zhuoyuan 已提交
92

Z
Zhuoyuan 已提交
93 94
  GatherOpKernel<T><<<block_count, thread_per_block, 0, d.stream()>>>(
      src, index, output, slice_size, indices_size, slice_size, out_size);
Z
Zhuoyuan 已提交
95 96 97
}

template <typename T>
Z
Zhuoyuan 已提交
98 99 100
__global__ void GatherOpKernel(const T* params,
                               const int* indices,
                               T* out,
Z
Zhuoyuan 已提交
101
                               int64 indices_size,
Z
Zhuoyuan 已提交
102 103 104
                               int64 slice_size,
                               int64 out_size) {
  /* I suppose we have the following macro,
Z
Zhuoyuan 已提交
105 106 107 108 109 110 111
     which I strongly suggest that we should put in cuda:
  #define CUDA_1D_KERNEL_LOOP(i, n)                            \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
       i += blockDim.x * gridDim.x)
  */
  CUDA_1D_KERNEL_LOOP(i, out_size) {
    int indices_i = i / slice_size;
Z
Zhuoyuan 已提交
112
    int slice_i = i - indices_i * slice_size;  // offset inside the slice
Z
Zhuoyuan 已提交
113 114 115
    int gather_i = indices[indices_i];
    int params_i = gather_i * slice_size + slice_i;
    out[i] = *(params + params_i);
Z
Zhuoyuan 已提交
116
  }
Z
Zhuoyuan 已提交
117
}