index_select_grad_kernel.cu 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/index_select_grad_kernel.h"

#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/utils/data_type.h"

namespace phi {

using paddle::platform::PADDLE_CUDA_NUM_THREADS;

template <typename T, typename IndexT>
__global__ void index_select_grad_cuda_kernel(const T* output_grad,
                                              T* input_grad,
                                              const IndexT* index,
                                              int64_t nums,
                                              int64_t N,
                                              int64_t stride,
                                              int64_t size,
                                              int64_t delta) {
  int64_t idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx >= N) {
    return;
  }

  int64_t pre_idx = idx / (stride * size);
  int64_t dim_idx = idx % (stride * size) / stride;
  IndexT src_dim_idx = index[dim_idx];
  int64_t input_idx = idx + (delta * pre_idx + src_dim_idx - dim_idx) * stride;
  paddle::platform::CudaAtomicAdd(&input_grad[input_idx], output_grad[idx]);
}

template <typename T>
__global__ void index_select_grad_init(T* input_grad, int64_t N) {
  int64_t idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx >= N) {
    return;
  }
  input_grad[idx] = 0.0;
}

template <typename T, typename Context>
void IndexSelectGradKernel(const Context& ctx,
                           const DenseTensor& x,
                           const DenseTensor& index,
                           const DenseTensor& out_grad,
                           int dim,
                           DenseTensor* x_grad) {
  auto* output_grad_data = out_grad.data<T>();
  auto* in_grad_data = ctx.template Alloc<T>(x_grad);

  auto input_dim = x_grad->dims();
  auto output_dim = out_grad.dims();
  dim = dim >= 0 ? dim : dim + input_dim.size();
  auto stride_dim = phi::stride(input_dim);
  int64_t stride = stride_dim[dim];
  int64_t size = output_dim[dim];
  int64_t delta = input_dim[dim] - size;
  const auto& index_type = index.dtype();

  bool index_type_match =
      index_type == phi::DataType::INT64 || index_type == phi::DataType::INT32;
  PADDLE_ENFORCE_EQ(index_type_match,
                    true,
                    phi::errors::InvalidArgument(
                        "Input(Index) holds the wrong type, it holds %s, but "
                        "desires to be %s or %s",
                        index_type,
                        phi::DataType::INT32,
                        phi::DataType::INT64));

  int64_t numel = x_grad->numel();
  int64_t index_nums = index.numel();
  int64_t out_nums = out_grad.numel();

  auto stream = ctx.stream();

  index_select_grad_init<
      T><<<(numel + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS,
           PADDLE_CUDA_NUM_THREADS,
           0,
           stream>>>(in_grad_data, numel);

  if (index_type == phi::DataType::INT64) {
    const int64_t* index_data = index.data<int64_t>();
    index_select_grad_cuda_kernel<T, int64_t><<<
        (out_nums + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS,
        PADDLE_CUDA_NUM_THREADS,
        0,
        stream>>>(output_grad_data,
                  in_grad_data,
                  index_data,
                  index_nums,
                  out_nums,
                  stride,
                  size,
                  delta);
  } else {
    const int* index_data = index.data<int>();
    index_select_grad_cuda_kernel<T, int><<<
        (out_nums + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS,
        PADDLE_CUDA_NUM_THREADS,
        0,
        stream>>>(output_grad_data,
                  in_grad_data,
                  index_data,
                  index_nums,
                  out_nums,
                  stride,
                  size,
                  delta);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(index_select_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::IndexSelectGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   int,
                   int64_t) {}