elementwise_kernel.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
YuanRisheng 已提交
15 16
#include "paddle/phi/kernels/cpu/elementwise.h"
#include "paddle/phi/api/ext/dispatch.h"
17
#include "paddle/phi/backends/cpu/cpu_context.h"
Y
YuanRisheng 已提交
18 19
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
20 21 22
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/elementwise_kernel_impl.h"

Y
YuanRisheng 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
namespace phi {

#define DEFINE_CPU_ELEMENTWISE_OP(name)                                     \
  template <typename T, typename Context>                                   \
  void name##RawKernel(const Context& dev_ctx,                              \
                       const DenseTensor& x,                                \
                       const DenseTensor& y,                                \
                       int axis,                                            \
                       DenseTensor* out) {                                  \
    dev_ctx.template Alloc<T>(out);                                         \
    if (x.dims() == y.dims()) {                                             \
      SameDimsElementwiseCompute<SameDims##name##Functor<CPUContext, T>>()( \
          dev_ctx, x, y, out);                                              \
    } else {                                                                \
      auto x_dims = x.dims();                                               \
      auto y_dims = y.dims();                                               \
      if (x_dims.size() >= y_dims.size()) {                                 \
        funcs::ElementwiseCompute<funcs::name##Functor<T>, T>(              \
            dev_ctx, x, y, axis, funcs::name##Functor<T>(), out);           \
      } else {                                                              \
        funcs::ElementwiseCompute<funcs::Inverse##name##Functor<T>, T>(     \
            dev_ctx, x, y, axis, funcs::Inverse##name##Functor<T>(), out);  \
      }                                                                     \
    }                                                                       \
  }

template <typename T, typename Context>
void DivideRawKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis,
                     DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  if (x.dims() == y.dims() && std::is_floating_point<T>::value) {
    SameDimsElementwiseCompute<SameDimsDivideFunctor<CPUContext, T>>()(
        dev_ctx, x, y, out);
  } else {
    auto x_dims = x.dims();
    auto y_dims = y.dims();
    if (x_dims.size() >= y_dims.size()) {
      funcs::ElementwiseCompute<funcs::DivideFunctor<T>, T>(
          dev_ctx, x, y, axis, funcs::DivideFunctor<T>(), out);
    } else {
      funcs::ElementwiseCompute<funcs::InverseDivideFunctor<T>, T>(
          dev_ctx, x, y, axis, funcs::InverseDivideFunctor<T>(), out);
    }
  }
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
template <typename T, typename Context>
void MaximumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  funcs::ElementwiseCompute<funcs::MaximumFunctor<T>, T>(
      dev_ctx, x, y, axis, funcs::MaximumFunctor<T>(), out);
}

template <typename T, typename Context>
void MinimumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  funcs::ElementwiseCompute<funcs::MinimumFunctor<T>, T>(
      dev_ctx, x, y, axis, funcs::MinimumFunctor<T>(), out);
}

template <typename T, typename Context>
void ModuloRawKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis,
                     DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  if (x_dims.size() >= y_dims.size()) {
    funcs::ElementwiseCompute<funcs::ModuloFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::ModuloFunctor<T>(), out);
  } else {
    funcs::ElementwiseCompute<funcs::InverseModuloFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::InverseModuloFunctor<T>(), out);
  }
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
template <typename T, typename Context>
void FloorDivideRawKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& y,
                          int axis,
                          DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  if (x_dims.size() >= y_dims.size()) {
    funcs::ElementwiseCompute<funcs::FloorDivideFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::FloorDivideFunctor<T>(), out);
  } else {
    funcs::ElementwiseCompute<funcs::InverseFloorDivideFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::InverseFloorDivideFunctor<T>(), out);
  }
}

template <typename T, typename Context>
void ElementwisePowRawKernel(const Context& dev_ctx,
                             const DenseTensor& x,
                             const DenseTensor& y,
                             int axis,
                             DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  funcs::ElementwiseCompute<funcs::ElementwisePowFunctor<T>, T>(
      dev_ctx, x, y, axis, funcs::ElementwisePowFunctor<T>(), out);
}
Y
YuanRisheng 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
// Create the definition of Add
DEFINE_CPU_ELEMENTWISE_OP(Add)

// Create the definition of Subtract
DEFINE_CPU_ELEMENTWISE_OP(Subtract)

// Create the definition of Multiply
DEFINE_CPU_ELEMENTWISE_OP(Multiply)

}  // namespace phi

using complex64 = ::phi::dtype::complex<float>;
using complex128 = ::phi::dtype::complex<double>;

// NOTE(chenweihang): using bfloat16 will cause redefine with xpu bfloat16
// using bfloat16 = ::phi::dtype::bfloat16;

Y
YuanRisheng 已提交
163 164
PD_REGISTER_KERNEL(
    fmax, CPU, ALL_LAYOUT, phi::FMaxKernel, float, double, int, int64_t) {}
165

Y
YuanRisheng 已提交
166 167
PD_REGISTER_KERNEL(
    fmin, CPU, ALL_LAYOUT, phi::FMinKernel, float, double, int, int64_t) {}
Y
YuanRisheng 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

PD_REGISTER_KERNEL(add_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::AddRawKernel,
                   float,
                   double,
                   int16_t,
                   int,
                   int64_t,
                   complex64,
                   complex128) {}
PD_REGISTER_KERNEL(subtract_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::SubtractRawKernel,
                   float,
                   double,
                   int16_t,
                   int,
                   int64_t,
                   complex64,
                   complex128,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(divide_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::DivideRawKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   complex64,
                   complex128) {}
PD_REGISTER_KERNEL(multiply_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::MultiplyRawKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   complex64,
                   complex128,
                   phi::dtype::bfloat16) {}
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
PD_REGISTER_KERNEL(maximum_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::MaximumRawKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(minimum_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::MinimumRawKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(modulo_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::ModuloRawKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
240 241 242 243 244 245 246 247 248 249 250 251 252 253
PD_REGISTER_KERNEL(floor_divide_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::FloorDivideRawKernel,
                   int,
                   int64_t) {}
PD_REGISTER_KERNEL(elementwise_pow_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwisePowRawKernel,
                   float,
                   double,
                   int,
                   int64_t) {}