reduce_op_handle.cc 11.6 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/reduce_op_handle.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
C
chengduoZH 已提交
18
#include "paddle/fluid/framework/details/container_cast.h"
C
chengduoZH 已提交
19
#include "paddle/fluid/framework/details/reduce_and_gather.h"
C
chengduoZH 已提交
20
#include "paddle/fluid/framework/details/variable_visitor.h"
21
#include "paddle/fluid/platform/place.h"
22
#include "paddle/fluid/platform/profiler/event_tracing.h"
C
chengduoZH 已提交
23

24
PADDLE_DEFINE_EXPORTED_bool(
C
chengduo 已提交
25 26 27
    cpu_deterministic, false,
    "Whether to make the result of computation deterministic in CPU side.");

C
chengduoZH 已提交
28 29 30 31
namespace paddle {
namespace framework {
namespace details {

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
std::once_flag CollectiveContext::init_flag_;
std::unique_ptr<CollectiveContext> CollectiveContext::context_;

static inline std::string GetRemoteVarName(const std::string &var_name,
                                           int trainer_id) {
  return string::Sprintf("%s_merged_tmp@trainer_%d", var_name, trainer_id);
}

void ReduceOpHandle::Wait(
    const std::map<platform::Place, platform::DeviceContext *> &dev_ctxes) {
  // TODO(gongwb): use event wait?
  for (auto &dev_ctx : dev_ctxes) {
    dev_ctx.second->Wait();
  }
}

C
chengduoZH 已提交
48
void ReduceOpHandle::RunImpl() {
49 50
  platform::RecordEvent record_event(
      Name(), platform::TracerEventType::Communication, 1);
Y
Yancey1989 已提交
51

C
chengduoZH 已提交
52
  if (places_.size() == 1) return;
C
chengduoZH 已提交
53
  // the input and output may have dummy var.
C
chengduoZH 已提交
54
  auto in_var_handles = DynamicCast<VarHandle>(inputs_);
C
chengduoZH 已提交
55 56 57

  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), places_.size(),
58 59 60 61
      platform::errors::InvalidArgument(
          "The number of inputs should equal to the number of places, but got "
          "the number of inputs is %d and the number of places is %d.",
          in_var_handles.size(), places_.size()));
C
chengduoZH 已提交
62

C
chengduoZH 已提交
63 64 65 66
  VarHandle *out_var_handle;
  {
    auto out_var_handles = DynamicCast<VarHandle>(outputs_);

T
tensor-tang 已提交
67
    PADDLE_ENFORCE_EQ(out_var_handles.size(), 1UL,
68 69 70
                      platform::errors::InvalidArgument(
                          "The number of output should be one, but got %d.",
                          out_var_handles.size()));
C
chengduoZH 已提交
71 72
    out_var_handle = out_var_handles.front();
  }
C
chengduoZH 已提交
73

C
chengduoZH 已提交
74
  auto in_0_handle = in_var_handles[0];
C
chengduoZH 已提交
75

76
  auto &var_scopes = local_exec_scopes_;
C
chengduoZH 已提交
77 78

  auto pre_in_var =
G
gongweibao 已提交
79
      var_scopes.at(in_0_handle->scope_idx())->FindVar(in_0_handle->name());
80 81 82 83

  PADDLE_ENFORCE_NOT_NULL(pre_in_var, platform::errors::NotFound(
                                          "Variable %s is not found in scope.",
                                          in_0_handle->name()));
C
chengduoZH 已提交
84

C
chengduoZH 已提交
85
  // NOTE: The Places of all input tensor must be all on CPU or all on GPU.
C
chengduoZH 已提交
86
  std::vector<platform::Place> in_places;  // used to get dev_ctx
C
chengduoZH 已提交
87
  for (auto *in_handle : in_var_handles) {
G
gongweibao 已提交
88
    in_places.emplace_back(in_handle->place());
C
chengduoZH 已提交
89
    auto in_var =
G
gongweibao 已提交
90
        var_scopes.at(in_handle->scope_idx())->FindVar(in_handle->name());
91 92 93 94 95

    PADDLE_ENFORCE_NOT_NULL(
        in_var, platform::errors::NotFound("Variable %s is not found in scope.",
                                           in_handle->name()));

C
chengduoZH 已提交
96
    VariableVisitor::EnforceShapeAndDTypeEQ(*pre_in_var, *in_var);
C
chengduoZH 已提交
97
  }
C
chengduoZH 已提交
98

G
gongweibao 已提交
99 100
  auto out_var = var_scopes.at(out_var_handle->scope_idx())
                     ->FindVar(out_var_handle->name());
101 102 103 104

  PADDLE_ENFORCE_NOT_NULL(
      out_var, platform::errors::NotFound("Variable %s is not found in scope.",
                                          out_var_handle->name()));
C
chengduoZH 已提交
105

C
chengduoZH 已提交
106 107 108 109 110
  // NOTE: The tensors' Place of input and output must be all on GPU or all on
  // CPU.
  auto in_p = VariableVisitor::GetMutableTensor(pre_in_var).place();
  platform::Place t_out_p;
  if (platform::is_gpu_place(in_p)) {
111 112 113
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(out_var_handle->place()), true,
                      platform::errors::PreconditionNotMet(
                          "Places of input and output must be all on GPU."));
G
gongweibao 已提交
114
    t_out_p = out_var_handle->place();
C
chengduoZH 已提交
115 116 117
  } else {
    t_out_p = platform::CPUPlace();
  }
C
chengduoZH 已提交
118

119
  if (pre_in_var->IsType<pten::SelectedRows>()) {
120
    this->RunAndRecordEvent([&] {
121 122
      std::vector<const pten::SelectedRows *> in_selected_rows =
          GetInputValues<pten::SelectedRows>(in_var_handles, var_scopes);
123 124 125 126 127 128 129 130

      const CollectiveContext &collective_context =
          *CollectiveContext::GetInstance();
      VLOG(10) << "GatherSelectedRows CollectiveContext:"
               << collective_context.String();

      // TODO(gongwb): add cpu support
      if (collective_context.endpoints_.size() <= 1 ||
131 132
          platform::is_cpu_place(in_places[0]) ||
          platform::is_cpu_place(t_out_p)) {
133 134
        GatherLocalSelectedRowsFunctor functor(
            in_selected_rows, in_places, dev_ctxes_, t_out_p,
135
            out_var->GetMutable<pten::SelectedRows>());
136 137
        WaitInputVarGenerated();
        functor();
138 139
        return;
      }
140
    });
C
chengduoZH 已提交
141
  } else {
C
chengduoZH 已提交
142 143
    std::vector<const LoDTensor *> lod_tensors =
        GetInputValues<LoDTensor>(in_var_handles, var_scopes);
C
chengduo 已提交
144

C
chengduoZH 已提交
145
    if (paddle::platform::is_cpu_place(lod_tensors[0]->place())) {
146
      WaitInputVarGenerated();
147
      this->RunAndRecordEvent([&] {
C
chengduo 已提交
148 149 150 151 152 153 154
        // FIXME(zcd): The order of summing is important,
        // especially when the type of data is float or double.
        // For example, the result of `a+b+c+d` may be different
        // with the result of `c+a+b+d`, so the summing order should be fixed.
        if (!FLAGS_cpu_deterministic) {
          ReduceLoDTensor func(lod_tensors,
                               out_var->GetMutable<framework::LoDTensor>());
155 156
          VisitDataType(framework::TransToProtoVarType(lod_tensors[0]->dtype()),
                        func);
C
chengduo 已提交
157 158 159
        } else {
          // We sum lod_tensors to reduce_sum_trg which is in local_scopes_0
          // here, but it doesn't mean reduce_sum_trg must be in local_scopes_0.
160
          auto &reduce_sum_trg = *this->local_exec_scopes_[0]
G
gongweibao 已提交
161
                                      ->FindVar(out_var_handle->name())
C
chengduo 已提交
162 163
                                      ->GetMutable<framework::LoDTensor>();
          ReduceLoDTensor func(lod_tensors, &reduce_sum_trg);
164 165
          VisitDataType(framework::TransToProtoVarType(lod_tensors[0]->dtype()),
                        func);
C
chengduo 已提交
166 167

          auto trg = out_var->GetMutable<framework::LoDTensor>();
168
          if (reduce_sum_trg.data() != trg->data()) {
C
chengduo 已提交
169 170 171
            TensorCopy(reduce_sum_trg, platform::CPUPlace(), trg);
          }
        }
172
      });
C
chengduoZH 已提交
173
    } else if (paddle::platform::is_gpu_place(lod_tensors[0]->place())) {
174
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
C
chengduoZH 已提交
175 176 177
      auto pre_in = pre_in_var->Get<framework::LoDTensor>();
      VariableVisitor::ShareDimsAndLoD(*pre_in_var, out_var);
      VariableVisitor::GetMutableTensor(out_var).mutable_data(
178
          out_var_handle->place(), pre_in.dtype());
C
chengduoZH 已提交
179

G
gongweibao 已提交
180
      auto out_p = out_var_handle->place();
181
      int root_id = out_p.device;
C
chengduoZH 已提交
182
      std::vector<std::function<void()>> all_reduce_calls;
C
chengduoZH 已提交
183
      for (size_t i = 0; i < var_scopes.size(); ++i) {
C
chengduoZH 已提交
184
        auto &p = in_places[i];
C
chengduoZH 已提交
185
        auto &lod_tensor = *lod_tensors[i];
C
chengduoZH 已提交
186

187
        int dev_id = p.device;
C
chengduoZH 已提交
188
        auto &nccl_ctx = nccl_ctxs_->at(dev_id);
C
chengduoZH 已提交
189

190
        void *buffer = const_cast<void *>(lod_tensor.data());
C
chengduoZH 已提交
191
        void *recvbuffer = nullptr;
C
chengduoZH 已提交
192
        if (root_id == dev_id) {
C
chengduoZH 已提交
193 194
          recvbuffer =
              out_var->GetMutable<framework::LoDTensor>()->mutable_data(
G
gongweibao 已提交
195
                  out_var_handle->place());
C
chengduoZH 已提交
196 197
        }

198 199
        int type = platform::ToNCCLDataType(
            framework::TransToProtoVarType(lod_tensor.dtype()));
C
chengduoZH 已提交
200 201 202
        size_t numel = static_cast<size_t>(lod_tensor.numel());
        all_reduce_calls.emplace_back(
            [buffer, recvbuffer, type, numel, root_id, &nccl_ctx] {
203
              PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
C
chengduoZH 已提交
204 205 206
                  buffer, recvbuffer, numel, static_cast<ncclDataType_t>(type),
                  ncclSum, root_id, nccl_ctx.comm_, nccl_ctx.stream()));
            });
C
chengduoZH 已提交
207 208
      }

209
      WaitInputVarGenerated();
C
chengduoZH 已提交
210 211 212 213 214 215
      this->RunAndRecordEvent([&] {
        platform::NCCLGroupGuard guard;
        for (auto &call : all_reduce_calls) {
          call();
        }
      });
C
chengduoZH 已提交
216
#else
217 218
      PADDLE_THROW(
          platform::errors::PreconditionNotMet("Not compiled with CUDA."));
219 220 221 222 223 224
#endif
    } else if (paddle::platform::is_xpu_place(lod_tensors[0]->place())) {
#if defined(PADDLE_WITH_XPU_BKCL)
      auto pre_in = pre_in_var->Get<framework::LoDTensor>();
      VariableVisitor::ShareDimsAndLoD(*pre_in_var, out_var);
      VariableVisitor::GetMutableTensor(out_var).mutable_data(
225
          out_var_handle->place(), pre_in.dtype());
226 227

      auto out_p = out_var_handle->place();
228
      int root_id = out_p.device;
229 230 231 232 233
      std::vector<std::function<void()>> all_reduce_calls;
      for (size_t i = 0; i < var_scopes.size(); ++i) {
        auto &p = in_places[i];
        auto &lod_tensor = *lod_tensors[i];

234
        int dev_id = p.device;
235 236
        auto &bkcl_ctx = bkcl_ctxs_->at(dev_id);

237
        void *buffer = const_cast<void *>(lod_tensor.data());
238 239 240 241 242 243 244
        void *recvbuffer = nullptr;
        if (root_id == dev_id) {
          recvbuffer =
              out_var->GetMutable<framework::LoDTensor>()->mutable_data(
                  out_var_handle->place());
        }

245 246
        int type = platform::ToBKCLDataType(
            framework::TransToProtoVarType(lod_tensor.dtype()));
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        size_t numel = static_cast<size_t>(lod_tensor.numel());
        all_reduce_calls.emplace_back([buffer, recvbuffer, type, numel, root_id,
                                       &bkcl_ctx] {
          PADDLE_ENFORCE_EQ(bkcl_reduce(bkcl_ctx.comm(), buffer, recvbuffer,
                                        numel, static_cast<BKCLDataType>(type),
                                        BKCL_ADD, root_id, nullptr),
                            BKCL_SUCCESS, platform::errors::Unavailable(
                                              "bkcl_all_reduce failed"));
        });
      }

      WaitInputVarGenerated();
      this->RunAndRecordEvent([&] {
        PADDLE_ENFORCE_EQ(
            bkcl_group_start(), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl_group_start failed"));
        for (auto &call : all_reduce_calls) {
          call();
        }
        PADDLE_ENFORCE_EQ(
            bkcl_group_end(), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl_group_end failed"));
      });
#else
      PADDLE_THROW(
          platform::errors::PreconditionNotMet("Not compiled with XPU."));
C
chengduoZH 已提交
273 274
#endif
    } else {
275
      PADDLE_THROW(platform::errors::InvalidArgument(
276 277
          "The place of tensor should be CPUPlace, CUDAPlace or XPUPlace, but "
          "got %s.",
278
          lod_tensors[0]->place()));
C
chengduoZH 已提交
279 280 281
    }
  }
}
C
chengduoZH 已提交
282

C
chengduoZH 已提交
283 284 285
template <typename T>
std::vector<const T *> ReduceOpHandle::GetInputValues(
    const std::vector<VarHandle *> &in_var_handles,
286
    const std::vector<Scope *> &var_scopes) const {
C
chengduoZH 已提交
287 288
  std::vector<const T *> in_selected_rows;
  for (auto *in_handle : in_var_handles) {
G
gongweibao 已提交
289 290
    auto &in_sr = var_scopes.at(in_handle->scope_idx())
                      ->FindVar(in_handle->name())
C
chengduoZH 已提交
291 292
                      ->Get<T>();
    in_selected_rows.emplace_back(&in_sr);
C
chengduoZH 已提交
293
  }
C
chengduoZH 已提交
294
  return in_selected_rows;
C
chengduoZH 已提交
295 296
}

C
chengduoZH 已提交
297 298 299 300
std::string ReduceOpHandle::Name() const { return "reduce"; }
}  // namespace details
}  // namespace framework
}  // namespace paddle