cudnn_lstm_op.cc 12.3 KB
Newer Older
P
phlrain 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuhongyu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <memory>
L
liuhongyu 已提交
16
#include <string>
C
chengduozh 已提交
17
#include "paddle/fluid/framework/op_registry.h"
L
liuhongyu 已提交
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class CudnnLSTMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
G
GaoWei8 已提交
27 28 29 30 31 32 33 34 35 36 37
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasInput("InitH"), "Input", "InitH", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasInput("InitC"), "Input", "InitC", "CudnnLSTM");

    OP_INOUT_CHECK(ctx->HasOutput("Reserve"), "Output", "Reserve", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("StateOut"), "Output", "StateOut",
                   "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("LastH"), "Output", "LastH", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("LastC"), "Output", "LastC", "CudnnLSTM");
L
liuhongyu 已提交
38 39

    auto in_dims = ctx->GetInputDim("Input");
G
GaoWei8 已提交
40 41 42
    auto init_h_dims = ctx->GetInputDim("InitH");
    auto init_c_dims = ctx->GetInputDim("InitC");

G
GaoWei8 已提交
43 44 45 46 47
    PADDLE_ENFORCE_EQ(in_dims.size(), 3,
                      platform::errors::InvalidArgument(
                          "The rank of Input in CudnnLSTM  must be 3. But "
                          "received Input's rank is %d.",
                          in_dims.size()));
G
GaoWei8 已提交
48
    PADDLE_ENFORCE_EQ(init_h_dims.size(), 3,
G
GaoWei8 已提交
49 50 51
                      platform::errors::InvalidArgument(
                          "The rank of InitH in CudnnLSTM  must be 3. But "
                          "received InitH's rank is %d.",
G
GaoWei8 已提交
52
                          init_h_dims.size()));
G
GaoWei8 已提交
53

54 55 56 57 58 59 60 61 62 63
    if (ctx->HasInput("SequenceLength")) {
      auto seq_dims = ctx->GetInputDim("SequenceLength");
      PADDLE_ENFORCE_EQ(
          in_dims[1], seq_dims[0],
          platform::errors::InvalidArgument(
              "The size of SequenceLength has to equal the batch_size. But "
              "received batch_size is %d and the size of SequenceLength is %d.",
              in_dims[1], seq_dims[0]));
    }

G
GaoWei8 已提交
64 65 66 67 68 69 70 71 72
    PADDLE_ENFORCE_EQ(
        in_dims[1], init_h_dims[1],
        platform::errors::InvalidArgument(
            "The in_dims[1] (Input dims) and init_h_dims[1] (InitH "
            "dims) should be equal. But "
            "received in_dims[1] is %d and init_h_dims[1] is %d.",
            in_dims[1], init_h_dims[1]));

    PADDLE_ENFORCE_EQ(init_c_dims, init_h_dims,
G
GaoWei8 已提交
73
                      platform::errors::InvalidArgument(
G
GaoWei8 已提交
74 75 76 77
                          "The InitC dims and InitH "
                          "dims should be equal. But "
                          "received init_c_dims is %d and init_h_dims is %d.",
                          init_c_dims, init_h_dims));
L
liuhongyu 已提交
78

79 80
    auto out_dims = in_dims;
    auto hidden_size = ctx->Attrs().Get<int>("hidden_size");
G
GaoWei8 已提交
81 82
    bool is_bidirec = ctx->Attrs().Get<bool>("is_bidirec");
    out_dims[2] = is_bidirec ? hidden_size * 2 : hidden_size;
83
    ctx->SetOutputDim("Out", out_dims);
G
GaoWei8 已提交
84 85
    ctx->SetOutputDim("LastH", init_c_dims);
    ctx->SetOutputDim("LastC", init_h_dims);
G
GaoWei8 已提交
86 87 88 89 90 91 92 93
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
L
liuhongyu 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  }
};

class CudnnLSTMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "Input",
        "(Tensor) RNN input tensor, which support variable-time length input "
        "sequence."
        "The shape of the Tensor MUST be ( seq_len * batch_size * input_size)"
        "seq_len is the total time step in this mini-batch (CAN be change in "
        "different batch)"
        "batch_size is the instance number of this batch"
        "input_size is the hidden size of the input."
G
GaoWei8 已提交
109
        "input_size and the hidden_size in the next may not be same");
L
liuhongyu 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    AddInput("InitH",
             "(Tensor) the initial hidden state of the LSTM"
             "input. This is a tensor with shape (num_layers x batch_size x "
             "hidden_size)"
             "and When is_bidirec is True, the shape will be (num_layers*2 x "
             "batch_size x hidden_size)");
    AddInput("InitC",
             "(Tensor) the initial cell state of the LSTm "
             "input. This is a tensor with shape (num_layers x batch_size x "
             "hidden_size)"
             "and When is_bidirec is True, the shape will be (num_layers*2 x "
             "batch_size x hidden_size)");
    AddInput("W",
             "(Tensor) the learnable hidden-hidden weights."
             " The shape is (N), where N is total weight size of the LSTM. "
             " cudnn concatenate all the weight to one Tensor");
126 127 128 129 130 131
    AddInput("SequenceLength",
             "(Tensor) When the input data is padding, "
             "set this parameter. This parameter represents "
             "the variable sequence lengths in a batch. "
             "The size of the vector has to equal the batch_size.")
        .AsDispensable();
G
GaoWei8 已提交
132 133 134 135 136 137 138
    AddOutput("Reserve",
              "(Tensor, a temporary output Tensor to store the reserve_data "
              "of cudnn kernel.")
        .AsIntermediate();
    AddOutput("StateOut",
              "Share memory with State. "
              "Store the global drop state when training");
L
liuhongyu 已提交
139 140 141 142 143 144
    AddOutput("Out",
              "(Tensor) the hidden state of LSTM operator. "
              "The shape is ( seq_len x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be ( seq_len x "
              "batch_size x hidden_size * 2) ");
G
GaoWei8 已提交
145
    AddOutput("LastH",
L
liuhongyu 已提交
146 147 148 149 150
              "(Tensor) the hidden state of the last step. "
              "The shape is ( num_layers x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be (num_layers*2 x "
              "batch_size x hidden_size)");
G
GaoWei8 已提交
151
    AddOutput("LastC",
L
liuhongyu 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164
              "(Tensor) the cell state of the last step"
              "The shape is ( num_layers x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirect is True, the shape will be (num_layers*2 x "
              "batch_size x hidden_size*2)");
    AddAttr<float>(
        "dropout_prob",
        "dropout prob of the dropout op"
        "the dropout ONLY work between lstm layers, not between time steps"
        "There is no dropout work on the Out tensor")
        .SetDefault(0.0);
    AddAttr<bool>("is_bidirec",
                  "is_bidirec"
T
tianshuo78520a 已提交
165
                  "if it is bidirectional rnn"
G
GaoWei8 已提交
166
                  "The will affect the shape of the Out, LastH, and LastC")
L
liuhongyu 已提交
167 168 169 170 171 172
        .SetDefault(false);
    AddAttr<int>("input_size", "input size ot the Input Tensor").SetDefault(10);
    AddAttr<int>("hidden_size", "hidden size of the LSTM").SetDefault(100);
    AddAttr<int>("num_layers", "the total layer number of the LSTM")
        .SetDefault(1);
    AddAttr<bool>("is_test", "True if in test phase.").SetDefault(false);
G
GaoWei8 已提交
173
    AddAttr<int>("seed", "seed to used if fix_seed is True").SetDefault(0);
L
liuhongyu 已提交
174 175 176 177 178 179 180
    AddComment(R"DOC(
CUDNN LSTM implementation

A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
181
$$ i_t = sigmoid(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$
L
liuhongyu 已提交
182

P
phlrain 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
$$ f_t = sigmoid(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

$$ o_t = sigmoid(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

$$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

$$ h_t = o_t \\odot tanh(c_t) $$

- W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
  of weights from the input gate to the input)
- The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
- sigmoid is the logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
  and cell activation vectors, respectively, all of which have the same size as
  the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- `tanh` is the activation functions.
- $\tilde{c_t}$ is also called candidate hidden state,
  which is computed based on the current input and the previous hidden state.

Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
L
liuhongyu 已提交
206 207 208 209 210 211 212 213 214 215 216 217
X represensts a matrix multiplication


)DOC");
  }
};

class CudnnLSTMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
G
GaoWei8 已提交
218 219 220 221
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "CudnnLSTMGrad");
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "CudnnLSTMGrad");
    OP_INOUT_CHECK(ctx->HasInput("InitH"), "Input", "InitH", "CudnnLSTMGrad");
    OP_INOUT_CHECK(ctx->HasInput("InitC"), "Input", "InitC", "CudnnLSTMGrad");
L
liuhongyu 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234

    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name)) {
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
      }
    };

    SetOutGradDim("Input");
    SetOutGradDim("W");
    SetOutGradDim("InitH");
    SetOutGradDim("InitC");
  }
G
GaoWei8 已提交
235 236 237 238 239 240
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
L
liuhongyu 已提交
241 242
};

H
hong 已提交
243 244
template <typename T>
class CudnnLSTMGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
245
 public:
H
hong 已提交
246
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
247 248

 protected:
249
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
250
    op->SetType("cudnn_lstm_grad");
H
hong 已提交
251 252 253 254
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("InitH", this->Input("InitH"));
    op->SetInput("InitC", this->Input("InitC"));
    op->SetInput("W", this->Input("W"));
255 256 257
    if (this->HasInput("SequenceLength")) {
      op->SetInput("SequenceLength", this->Input("SequenceLength"));
    }
G
GaoWei8 已提交
258 259
    op->SetInput("Reserve", this->Output("Reserve"));
    op->SetInput("StateOut", this->Output("StateOut"));
H
hong 已提交
260 261
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
G
GaoWei8 已提交
262 263
    op->SetInput(framework::GradVarName("LastC"), this->OutputGrad("LastC"));
    op->SetInput(framework::GradVarName("LastH"), this->OutputGrad("LastH"));
H
hong 已提交
264 265 266 267 268 269

    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
    op->SetOutput(framework::GradVarName("InitH"), this->InputGrad("InitH"));
    op->SetOutput(framework::GradVarName("InitC"), this->InputGrad("InitC"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
270 271 272
  }
};

C
chengduozh 已提交
273 274 275 276 277 278 279 280 281
template <typename T>
class NotImpleKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_THROW(
        "CPU is not support for this kernel now. Will be add in the future");
  }
};

L
liuhongyu 已提交
282 283 284 285
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduozh 已提交
286
REGISTER_OPERATOR(cudnn_lstm, ops::CudnnLSTMOp, ops::CudnnLSTMOpMaker,
H
hong 已提交
287 288
                  ops::CudnnLSTMGradOpMaker<paddle::framework::OpDesc>,
                  ops::CudnnLSTMGradOpMaker<paddle::imperative::OpBase>);
C
chengduozh 已提交
289
REGISTER_OPERATOR(cudnn_lstm_grad, ops::CudnnLSTMGradOp);
L
liuhongyu 已提交
290

C
chengduozh 已提交
291 292
REGISTER_OP_CPU_KERNEL(cudnn_lstm, ops::NotImpleKernel<float>);
REGISTER_OP_CPU_KERNEL(cudnn_lstm_grad, ops::NotImpleKernel<float>);