pool_mkldnn_op.cc 17.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
17
#include "paddle/fluid/framework/data_layout_transform.h"
18 19 20 21

namespace paddle {
namespace operators {

22 23
using framework::DataLayout;
using mkldnn::memory;
24
using mkldnn::pooling_backward;
25 26 27 28 29
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
30 31 32

// Generate keys for storing/retriving primitives for this operator
// TODO(jczaja): Make hashing function more optimial
M
mozga-intel 已提交
33 34 35 36 37 38 39
static std::string gethash(const memory::dims& input_dims,
                           const std::string& pooling_type,
                           const std::vector<int>& ksize,
                           const std::vector<int>& strides,
                           const std::vector<int>& paddings,
                           const std::string& suffix) {
  auto dims2str = [](const memory::dims& operand_dims) {
40 41 42 43 44 45 46 47 48 49
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  };
  return dims2str(input_dims) + dims2str(ksize) + dims2str(strides) +
         dims2str(paddings) + pooling_type + suffix;
}

50 51
static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                      int padding, int stride) {
52 53 54
  return (input_size - kernel_size + 2 * padding) / stride + 1;
}

55 56 57 58 59 60
static inline void CorrectOutputSize(
    const std::vector<int>& src_tz, const std::vector<int>& dst_tz,
    const std::vector<int>& kernel_size, const std::vector<int>& paddings,
    const std::vector<int>& strides,
    std::vector<int>& right_bot_padding) {  // NOLINT
  for (size_t i = 0; i < right_bot_padding.size(); i++) {
61 62 63 64 65 66 67 68
    int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                           paddings[i], strides[i]);
    if (desired_size != dst_tz[i + 2]) {
      right_bot_padding[i] += strides[i];
    }
  }
}

69 70 71 72 73 74 75 76 77 78 79 80 81
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

82 83 84
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
      }
    }

    // Only 2D pooling is supported now
    PADDLE_ENFORCE(ksize.size() == 2, "ksize must be 2D, i.e. 2D pooling");
    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
                   "pooling_type must be 'max' or 'avg'");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input dim must be with 4, i.e. NCHW");

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

110 111 112
    auto input_format = input->format();
    memory::format output_format{memory::format::format_undef};

113 114 115 116 117 118 119 120
    const std::string key = gethash(src_tz, pooling_type, ksize, strides,
                                    paddings, ctx.op().Output("Out"));
    const std::string key_pool_p = key + "@pool_p";
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
121

122 123 124
    auto pool_p =
        std::static_pointer_cast<pooling_forward>(dev_ctx.GetBlob(key_pool_p));
    if (pool_p == nullptr) {
125 126 127 128 129 130 131
      const std::vector<int>& padding_left_top(paddings);
      std::vector<int> padding_right_bottom(paddings);
      bool ceil_mode = ctx.Attr<bool>("ceil_mode");
      if (ceil_mode) {
        CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                          padding_right_bottom);
      }
X
xiaolil1 已提交
132 133 134

      mkldnn::memory::data_type dt = paddle::framework::ToMKLDNNDataType(input->type());

135
      auto src_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
136
          src_tz, dt, input_format);
137

138 139 140 141
      /* create memory descriptor for pooling without specified format
       * ('any') which lets a primitive (pooling in this case) choose
       * the memory format preferred for best performance
       */
X
xiaolil1 已提交
142
      auto dst_md = platform::MKLDNNMemDesc(dst_tz, dt,
143
                                            mkldnn::memory::format::any);
144

145
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd =
146 147 148
          CreatePrimitiveDesc(src_md, dst_md, strides, padding_left_top,
                              padding_right_bottom, ksize, pooling_type,
                              mkldnn_engine, ceil_mode);
149 150 151 152 153 154 155 156 157 158

      // save pool_pd into global device context to be referred in backward path
      dev_ctx.SetBlob(key_pool_pd, pool_pd);

      std::shared_ptr<mkldnn::memory> workspace_memory =
          CreateWorkspaceMemory(pool_pd, pooling_type, mkldnn_engine);

      // save pool_workspace_memory to be referred in backward path
      dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory);

159 160 161 162
      auto src_memory = std::make_shared<memory>(pool_pd->src_primitive_desc(),
                                                 to_void_cast<T>(input_data));
      auto dst_memory =
          std::make_shared<memory>(pool_pd->dst_primitive_desc(), output_data);
163

164 165 166 167 168 169
      dev_ctx.SetBlob(key_pool_src_mem_p, src_memory);
      dev_ctx.SetBlob(key_pool_dst_mem_p, dst_memory);

      pool_p = std::make_shared<pooling_forward>(*pool_pd, *(src_memory.get()),
                                                 *(dst_memory.get()),
                                                 *workspace_memory);
170 171

      dev_ctx.SetBlob(key_pool_p, pool_p);
172 173 174

      output_format =
          (memory::format)dst_memory->get_primitive_desc().desc().data.format;
175 176 177 178 179 180 181 182 183 184
    } else {
      // Primitives already exist
      auto pool_src_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(pool_src_memory_p != nullptr,
                     "Fail to find pooling src mem_p in device context");
      auto pool_dst_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
      PADDLE_ENFORCE(pool_dst_memory_p != nullptr,
                     "Fail to find pooling dst mem_p in device context");
185
      pool_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
186
      pool_dst_memory_p->set_data_handle(output_data);
187 188 189 190

      output_format = (memory::format)pool_dst_memory_p->get_primitive_desc()
                          .desc()
                          .data.format;
191
    }
192 193

    // push primitive to stream and wait until it's executed
194
    std::vector<mkldnn::primitive> pipeline{*(pool_p.get())};
195 196 197 198
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(output_format);
199 200 201 202 203
  }

 private:
  std::unique_ptr<mkldnn::pooling_forward::primitive_desc> CreatePrimitiveDesc(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& dst,
204 205 206 207
      const std::vector<int>& stride, const std::vector<int>& padding_left_top,
      const std::vector<int>& padding_right_bot, const std::vector<int>& kernel,
      const std::string& pooling_type, const mkldnn::engine& engine,
      bool ceil_mode) const {
208 209 210 211
    auto pool_desc = mkldnn::pooling_forward::desc(
        mkldnn::prop_kind::forward,
        pooling_type == "max" ? mkldnn::algorithm::pooling_max
                              : mkldnn::algorithm::pooling_avg,
212 213
        src, dst, stride, kernel, padding_left_top, padding_right_bot,
        mkldnn::padding_kind::zero);
214 215 216 217 218 219 220 221 222 223 224 225

    auto p_pool_pd =
        new mkldnn::pooling_forward::primitive_desc(pool_desc, engine);
    return std::unique_ptr<mkldnn::pooling_forward::primitive_desc>(p_pool_pd);
  }

  std::unique_ptr<mkldnn::memory> CreateWorkspaceMemory(
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd,
      const std::string& pooling_type, const mkldnn::engine& engine) const {
    mkldnn::memory::primitive_desc workspace_md =
        pooling_type == "max"
            ? pool_pd->workspace_primitive_desc()
226 227 228 229
            : mkldnn::memory::primitive_desc({{},
                                              platform::MKLDNNGetDataType<T>(),
                                              mkldnn::memory::format::nchw},
                                             engine);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    auto p_workspace_memory = new mkldnn::memory(workspace_md);
    return std::unique_ptr<mkldnn::memory>(p_workspace_memory);
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

247 248 249 250 251 252 253
    PADDLE_ENFORCE(in_x->layout() == DataLayout::kMKLDNN &&
                       in_x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input X tensor");
    PADDLE_ENFORCE(out_grad->layout() == DataLayout::kMKLDNN &&
                       out_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input output_grad tensor");

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const mkldnn::engine& mkldnn_engine = dev_ctx.GetEngine();

    const T* out_grad_data = out_grad->data<T>();
    T* in_x_grad_data = in_x_grad->mutable_data<T>(ctx.GetPlace());
272
    memory::format in_x_grad_format{memory::format::format_undef};
273 274 275 276 277 278

    std::vector<int> diff_src_tz =
        paddle::framework::vectorize2int(in_x_grad->dims());
    std::vector<int> diff_dst_tz =
        paddle::framework::vectorize2int(out_grad->dims());

279 280 281 282 283 284 285
    // Get an unique name from "argument" name of "Out" variable
    // This name will be used as key when referring info from device context
    const std::string key = gethash(diff_src_tz, pooling_type, ksize, strides,
                                    paddings, ctx.op().Input("Out"));
    const std::string key_pool_bwd_p = key + "@pool_bwd_p";
    const std::string key_pool_diff_src_mem_p = key + "@pool_diff_src_mem_p";
    const std::string key_pool_diff_dst_mem_p = key + "@pool_diff_dst_mem_p";
286 287
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
288 289 290
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
291

292 293 294 295 296 297 298 299 300 301 302 303 304 305
    auto user_diff_dst_memory =
        memory({{{diff_dst_tz}, memory::data_type::f32, out_grad->format()},
                mkldnn_engine},
               to_void_cast<T>(out_grad_data));

    std::shared_ptr<memory> diff_src_memory;
    std::shared_ptr<memory> diff_dst_memory;
    auto dst_memory =
        std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
    PADDLE_ENFORCE(dst_memory != nullptr,
                   "Fail to find dst_memory in device context");

    primitive reorder_diff_dst;
    bool is_diff_dst_reordered = false;
306 307 308
    auto pool_bwd_p = std::static_pointer_cast<pooling_backward>(
        dev_ctx.GetBlob(key_pool_bwd_p));
    if (pool_bwd_p == nullptr) {
309 310 311 312 313
      // Retrieve src_memory/dst_memory saved in forward pass
      auto src_memory =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(src_memory != nullptr,
                     "Fail to find src_memory in device context");
314 315 316 317 318 319
      // Retrieve pool_pd/pool_workspace_memory from device context
      auto pool_pd =
          std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
              dev_ctx.GetBlob(key_pool_pd));
      PADDLE_ENFORCE(pool_pd != nullptr,
                     "Fail to find pool_pd in device context");
320
      auto workspace_memory = std::static_pointer_cast<memory>(
321 322 323 324
          dev_ctx.GetBlob(key_pool_workspace_memory));
      PADDLE_ENFORCE(workspace_memory != nullptr,
                     "Fail to find workspace_memory in device context");

325 326 327
      // create memory descriptors for pooling
      auto diff_src_md = src_memory.get()->get_primitive_desc().desc();
      auto diff_dst_md = dst_memory.get()->get_primitive_desc().desc();
328 329 330 331 332 333 334 335 336

      auto pool_bwd_desc = mkldnn::pooling_backward::desc(
          pooling_type == "max" ? mkldnn::algorithm::pooling_max
                                : mkldnn::algorithm::pooling_avg,
          diff_src_md, diff_dst_md, strides, ksize, paddings, paddings,
          mkldnn::padding_kind::zero);
      auto pool_bwd_pd = mkldnn::pooling_backward::primitive_desc(
          pool_bwd_desc, mkldnn_engine, *pool_pd);

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
      // reorder between user_diff_dst and pool diff_dst if needed
      diff_dst_memory = std::make_shared<memory>(user_diff_dst_memory);
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }

      diff_src_memory = std::make_shared<memory>(
          pool_bwd_pd.diff_src_primitive_desc(), in_x_grad_data);

      dev_ctx.SetBlob(key_pool_diff_src_mem_p, diff_src_memory);
      dev_ctx.SetBlob(key_pool_diff_dst_mem_p, diff_dst_memory);

353
      pool_bwd_p = std::make_shared<pooling_backward>(
354 355
          pool_bwd_pd, *(diff_dst_memory.get()), *workspace_memory,
          *(diff_src_memory));
356
      dev_ctx.SetBlob(key_pool_bwd_p, pool_bwd_p);
357

358 359
    } else {
      // Primitives already exist
360
      diff_src_memory = std::static_pointer_cast<memory>(
361
          dev_ctx.GetBlob(key_pool_diff_src_mem_p));
362
      PADDLE_ENFORCE(diff_src_memory != nullptr,
363
                     "Fail to find pooling src mem_p in device context");
364
      diff_dst_memory = std::static_pointer_cast<memory>(
365
          dev_ctx.GetBlob(key_pool_diff_dst_mem_p));
366
      PADDLE_ENFORCE(diff_dst_memory != nullptr,
367
                     "Fail to find pooling dst mem_p in device context");
368 369 370 371 372 373 374 375 376 377 378 379

      diff_src_memory->set_data_handle(reinterpret_cast<void*>(in_x_grad_data));
      diff_dst_memory->set_data_handle(const_cast<T*>(out_grad_data));

      // reorder between user_diff_dst and pool diff_dst if needed
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }
380
    }
381

382 383 384 385
    in_x_grad_format = (memory::format)diff_src_memory->get_primitive_desc()
                           .desc()
                           .data.format;

386
    // push primitive to stream and wait until it's executed
387 388 389 390 391
    std::vector<mkldnn::primitive> pipeline;
    if (is_diff_dst_reordered) {
      pipeline.push_back(reorder_diff_dst);
    }
    pipeline.push_back(*(pool_bwd_p.get()));
392
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
393 394 395

    in_x_grad->set_layout(DataLayout::kMKLDNN);
    in_x_grad->set_format(in_x_grad_format);
396 397 398 399 400 401
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

402 403
namespace ops = paddle::operators;

404
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
405 406 407 408
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
                   ops::PoolMKLDNNOpKernel<uint8_t>);

409
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
410
                   ops::PoolMKLDNNGradOpKernel<float>);