transpose_kernel.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/transpose_kernel.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
void SetOutMemDescWithLogicalLayoutFusesSupport(
    const OneDNNContext& dev_ctx,
    phi::DenseTensor* out,
    const dnnl::memory::desc& out_md) {
  const auto fused_unsqueeze2_axes =
      dev_ctx.HasDnnAttr("fused_unsqueeze2_axes")
          ? PADDLE_GET_CONST(std::vector<int>,
                             dev_ctx.GetDnnAttr("fused_unsqueeze2_axes"))
          : std::vector<int>();
  const auto fused_reshape2_shape =
      dev_ctx.HasDnnAttr("fused_reshape2_shape")
          ? PADDLE_GET_CONST(std::vector<int>,
                             dev_ctx.GetDnnAttr("fused_reshape2_shape"))
          : std::vector<int>();
  const auto fused_squeeze2_axes =
      dev_ctx.HasDnnAttr("fused_squeeze2_axes")
          ? PADDLE_GET_CONST(std::vector<int>,
                             dev_ctx.GetDnnAttr("fused_squeeze2_axes"))
          : std::vector<int>();

  if (!fused_unsqueeze2_axes.empty()) {
    funcs::SetOutMemDescWithUnsqueeze2FuseSupport(
        fused_unsqueeze2_axes, out, out_md);
  } else if (!fused_reshape2_shape.empty()) {
    funcs::SetOutMemDescWithReshape2FuseSupport(
        fused_reshape2_shape, out, out_md);
  } else if (!fused_squeeze2_axes.empty()) {
    out->set_mem_desc(out_md);
    out->Resize(make_ddim(out_md.dims()));
  } else {
    out->set_mem_desc(out_md);
  }
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
void SetInMemDescWithSqueeze2FuseSupport(
    const std::vector<int> fused_squeeze2_axes,
    DenseTensor* in,
    const dnnl::memory::desc& in_md) {
  const std::set<int64_t> squeeze2_axes_set(fused_squeeze2_axes.begin(),
                                            fused_squeeze2_axes.end());
  const std::vector<int64_t>& x_vec_dims = in_md.dims();
  std::vector<int64_t> squeezed_op_tz(
      x_vec_dims.size() - fused_squeeze2_axes.size(), 0);

  int j = 0;
  for (size_t i = 0; i < x_vec_dims.size(); ++i) {
    if (squeeze2_axes_set.count(i) ||
        squeeze2_axes_set.count(i - x_vec_dims.size())) {
      PADDLE_ENFORCE_EQ(
          x_vec_dims[i],
          1,
          errors::InvalidArgument(
              "Squeeze2 input dim %d should be equal to one, but get %d.",
              i,
              x_vec_dims[i]));
      continue;
    }
    squeezed_op_tz[j++] = x_vec_dims[i];
  }

  in->set_mem_desc(in_md.reshape(squeezed_op_tz));
  in->Resize(make_ddim(squeezed_op_tz));
}

void SetInMemDescWithLogicalLayoutFusesSupport(
    const OneDNNContext& dev_ctx,
    DenseTensor* in,
    const dnnl::memory::desc& in_md) {
  const auto fused_squeeze2_axes =
      dev_ctx.HasDnnAttr("fused_squeeze2_axes")
          ? PADDLE_GET_CONST(std::vector<int>,
                             dev_ctx.GetDnnAttr("fused_squeeze2_axes"))
          : std::vector<int>();
  if (fused_squeeze2_axes.empty()) {
    in->set_mem_desc(in_md);
    in->Resize(make_ddim(in_md.dims()));
  } else {
    SetInMemDescWithSqueeze2FuseSupport(fused_squeeze2_axes, in, in_md);
  }
}

template <typename T, typename Context>
void TransposeKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const std::vector<int>& axis,
                     DenseTensor* out) {
  PADDLE_ENFORCE_EQ(
108 109
      dev_ctx.GetPlace().GetType(),
      AllocationType::CPU,
110 111 112 113 114
      errors::PreconditionNotMet("oneDNN Transpose kernel must use CPUPlace"));

  SetInMemDescWithLogicalLayoutFusesSupport(
      dev_ctx, const_cast<DenseTensor*>(&x), x.mem_desc());

115
  if (axis.size() == 1 || axis.size() == 0) {
116
    Copy<Context>(dev_ctx, x, x.place(), false, out);
117 118 119 120 121 122
    out->set_mem_desc(x.mem_desc());
    return;
  }

  auto x_vec_dims = vectorize(x.dims());
  auto x_type = funcs::ToOneDNNDataType(x.dtype());
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

  dnnl::primitive_attr attrs;
  const int32_t mask = 0;
  const auto quantization_scale =
      dev_ctx.HasDnnAttr("scale")
          ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("scale"))
          : 1.0f;
  const auto quantization_shift =
      dev_ctx.HasDnnAttr("shift")
          ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("shift"))
          : 0.0f;
  const auto output_data_type =
      dev_ctx.HasDnnAttr("output_data_type")
          ? PADDLE_GET_CONST(std::string,
                             dev_ctx.GetDnnAttr("output_data_type"))
          : "";
  const bool with_scale = quantization_scale != 1.0f;
  const bool with_shift = quantization_shift != 0.0f;

  if (with_scale) {
    attrs.set_output_scales(mask, {quantization_scale});
  }

  if (with_shift) {
    auto dst = output_data_type == "fp32" ? DNNL_ARG_SRC : DNNL_ARG_DST;
    attrs.set_zero_points(
        dst, mask, {static_cast<int32_t>(quantization_shift)});
  }

  DataType out_dtype;
  if (output_data_type == "bf16") {
    out_dtype = DataType::BFLOAT16;
  } else if (output_data_type == "int8") {
    out_dtype = DataType::INT8;
  } else if (output_data_type == "uint8") {
    out_dtype = DataType::UINT8;
  } else if (output_data_type == "fp32") {
    out_dtype = DataType::FLOAT32;
  } else {
    out_dtype = x.dtype();
  }
  auto out_type = phi::funcs::ToOneDNNDataType(out_dtype);

166
  funcs::ReorderOneDNNHandler reorder_handler(
167 168
      x_vec_dims, x.dtype(), x_type, out_dtype, out_type, dev_ctx.GetEngine());

169 170 171
  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
      x.mem_desc(), funcs::to_void_cast(x.data<T>()));

172
  auto fake_strides = funcs::FakeTransposeStrides(x_vec_dims, axis);
173
  auto dst_md = dnnl::memory::desc(x_vec_dims, out_type, fake_strides);
174
  auto reorder_dst_memory_p =
175 176 177 178
      reorder_handler.AcquireDstMemory(out, dst_md, dev_ctx.GetPlace());

  auto reorder_p = reorder_handler.AcquireReorder(
      reorder_dst_memory_p, reorder_src_memory_p, attrs);
179 180 181 182 183 184 185 186 187 188 189

  auto& astream = OneDNNContext::tls().get_stream();
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  // it is needed because oneDNN's permute axis understand axes order in
  // different way PaddlePaddle's transpose
  std::vector<int> permute_axis(axis.size());
  for (size_t i = 0; i < axis.size(); ++i) {
    permute_axis[axis[i]] = i;
  }
190

191
  SetOutMemDescWithLogicalLayoutFusesSupport(
192 193
      dev_ctx,
      out,
194 195
      reorder_dst_memory_p->get_desc().permute_axes(
          funcs::TransposeToPermuteAxes(axis)));
196 197 198 199 200 201 202 203 204 205 206
}
}  // namespace phi

PD_REGISTER_KERNEL(transpose,
                   OneDNN,
                   ONEDNN,
                   phi::TransposeKernel,
                   float,
                   uint8_t,
                   int8_t,
                   phi::dtype::bfloat16) {}