debugging.py 21.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
16 17 18 19
import random
from enum import Enum

import numpy as np
20 21

import paddle
22
from paddle.fluid import core
23 24 25
from paddle.fluid.framework import dygraph_only

__all__ = [
26 27
    "DebugMode",
    "TensorCheckerConfig",
28 29 30
    "enable_operator_stats_collection",
    "disable_operator_stats_collection",
    "collect_operator_stats",
31 32
    "enable_tensor_checker",
    "disable_tensor_checker",
33 34 35
]


36
class DebugMode(Enum):
37 38 39 40 41 42 43 44 45 46 47 48 49
    """
    The DebugMode is a feature that helps to present the state of the TensorCheckerConfig. Each DebugMode has a specific meaning, which is explained below:

    - DebugMode.CHECK_NAN_INF_AND_ABORT: This mode prints or saves information about Tensors that contain NaN/Inf and interrupts the program.

    - DebugMode.CHECK_NAN_INF: This mode prints or saves critical information about Tensors that contain NaN/Inf but allows the program to continue running.

    - DebugMode.CHECK_ALL_FOR_OVERFLOW: This mode checks the output of the FP32 operator and prints or saves information about key Tensors that exceed the FP16 representation range, such as overflow or underflow.

    - DebugMode.CHECK_ALL: This mode prints or saves output Tensor key information for all operators.

    """

50 51 52 53
    CHECK_NAN_INF_AND_ABORT = 0
    CHECK_NAN_INF = 1
    CHECK_ALL_FOR_OVERFLOW = 2
    CHECK_ALL = 3
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    # CHECK_ALL_AND_ABORT = 4
    # DUMP_ALL = 5


def set_checked_op_list(checked_op_list):
    # check checked_op_list
    if checked_op_list is not None:
        if isinstance(checked_op_list, (list, tuple)):
            check_op_list = ",".join(value for value in checked_op_list)
            paddle.fluid.core.set_checked_op_list(check_op_list)
        else:
            raise ValueError("checked_op_list must be list or tuple")


def set_skipped_op_list(skipped_op_list):
    # check skipped_op_list
    if skipped_op_list is not None:
        if isinstance(skipped_op_list, (list, tuple)):
            skip_op_list = ",".join(value for value in skipped_op_list)
            paddle.fluid.core.set_skipped_op_list(skip_op_list)
        else:
            raise ValueError("skipped_op_list must be list or tuple")
76 77 78 79


class TensorCheckerConfig:
    """
80
    The purpose of this class is to collect the configuration for checking NaN and Inf values in the tensors of a module or operator. It takes the following arguments:
81 82

    Args:
83
        enable(bool): Indicating whether to enable the detection of NaN and Inf values in tensors. The default value is False, which means that these tools will not be used.
84

85
        debug_mode(DebugMode, optional): A parameter that determines the type of debugging to be used. Default is DebugMode.CHECK_NAN_INF_AND_ABORT.
86

87
        output_dir(string, optional): The path to store collected data. If this parameter is set to None, the data will be printed to the terminal. Default is None.
88

89
        checked_op_list(list|tuple, optional): Specifies a list of operators that need to be checked during program execution, for example, checked_op_list=['elementwise_add', 'conv2d'], indicating that the output results of elementwise_add and conv2d should be checked for nan/inf during program execution. Default is None.
90

91
        skipped_op_list(list|tuple, optional): Specifies a list of operators that do not need to be checked during program execution, for example, skipped_op_list=['elementwise_add', 'conv2d'], indicating that the output results of elementwise_add and conv2d should not be checked for nan/inf during program execution. None is None.
92

93
        debug_step(list|tuple, optional): A list or tuple used primarily for nan/inf checking during model training. For example, debug_step=[1,5] indicates that nan/inf checking should only be performed on model training iterations 1 to 5. Default is None.
94

95
        stack_height_limit(int, optional): An integer value specifying the maximum depth of the call stack. This feature supports printing the call stack at the error location. Currently, only enabling or disabling call stack printing is supported. If you want to print the corresponding C++ call stack when NaN is detected in GPU Kernel, set stack_height_limit to 1, otherwise set it to 0. Default is 1.
96 97 98

    Examples:

99 100 101 102 103 104
        ..  code-block:: python

            import paddle

            checker_config = paddle.amp.debugging.TensorCheckerConfig(enable=True, debug_mode=paddle.amp.debugging.DebugMode.CHECK_NAN_INF)
            paddle.amp.debugging.enable_tensor_checker(checker_config)
105

106 107 108 109 110
            x = paddle.to_tensor([1, 0, 3], place=paddle.CPUPlace(), dtype='float32', stop_gradient=False)
            y = paddle.to_tensor([0.2, 0, 0.5], place=paddle.CPUPlace(), dtype='float32')
            res = paddle.pow(x, y)
            paddle.autograd.backward(res, retain_graph=True)
            paddle.amp.debugging.disable_tensor_checker()
111

112 113 114 115 116 117 118
            #[PRECISION] [ERROR] in [device=cpu, op=elementwise_pow_grad, tensor=, dtype=fp32], numel=3, num_nan=1, num_inf=0, num_zero=0, max=2.886751e-01, min=2.000000e-01, mean=-nan

            # when DebugMode.CHECK_NAN_INF_AND_ABORT and stack_height_limit = 1
            #Traceback (most recent call last):
            #    res = paddle.pow(x, y)
            #  File "/usr/local/lib/python3.8/dist-packages/paddle/tensor/math.py", line 447, in pow
            #    return _C_ops.elementwise_pow(x, y)
119 120 121 122

    """

    # For module debugging
123
    current_step_id = 0
124 125 126 127 128

    def __init__(
        self,
        enable,
        debug_mode=DebugMode.CHECK_NAN_INF_AND_ABORT,
129
        output_dir=None,
130 131 132
        checked_op_list=None,
        skipped_op_list=None,
        debug_step=None,
133
        stack_height_limit=1,
134 135 136 137
    ):

        self.enable = enable
        self.debug_mode = debug_mode
138
        self.output_dir = output_dir
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

        self.checked_op_list = checked_op_list
        self.skipped_op_list = skipped_op_list

        self.debug_step = debug_step
        self.stack_height_limit = stack_height_limit

        self.start_step = None
        self.end_step = None

        self.seed = 123
        self.initial_seed = 123

        # check debug_step
        if debug_step is not None:
            if isinstance(debug_step, (tuple, list)):
                assert (
                    len(self.debug_step) == 2
                    and self.debug_step[1] > self.debug_step[0]
                )
                self.start_step, self.end_step = self.debug_step
                self.start_step = max(self.start_step, 0)
            else:
                raise ValueError("debug_step must be list or tuple")

        if core.is_compiled_with_cuda():
            for i in range(core.get_cuda_device_count()):
                self.initial_seed = core.default_cuda_generator(
                    i
                ).initial_seed()
        elif core.is_compiled_with_xpu():
            for i in range(core.get_xpu_device_count()):
                self.initial_seed = core.default_xpu_generator(i).initial_seed()

        self.initial_seed = core.default_cpu_generator().initial_seed()

        # check debug_mode
        if self.debug_mode.name not in DebugMode.__members__:
            raise ValueError(
                "debug_mode in DebugMode",
                self.debug_mode,
                DebugMode.__members__,
            )

183
        set_checked_op_list(self.checked_op_list)
184

185
        set_skipped_op_list(self.skipped_op_list)
186 187 188 189

        if self.enable:
            self._set_seed(self.enable)

190 191 192 193 194 195 196 197
    def _set_seed(self, flag):
        if self.initial_seed != self.seed:
            self.seed = self.initial_seed

        if self.seed > np.iinfo(np.uint32).max or self.seed < 0:
            print("[Warnning: Seed must be between 0 and 2**32 - 1")
            self.seed = 123

198 199 200 201 202
        # get random seed
        paddle.seed(self.seed)
        np.random.seed(self.seed)
        random.seed(self.seed)

203 204 205
        # info
        print("AMP Debugging TensorCheckerConfig: seed ", self.seed)

206 207 208
        # set cudnn and cpu
        if core.is_compiled_with_cuda():
            paddle.set_flags({"FLAGS_cudnn_deterministic": flag})
209 210 211 212
            print(
                "AMP Debugging TensorCheckerConfig: FLAGS_cudnn_deterministic is ",
                flag,
            )
213

214
        paddle.set_flags({"FLAGS_cpu_deterministic": flag})
215 216 217 218 219 220 221 222 223 224 225 226 227 228
        print(
            "AMP Debugging TensorCheckerConfig: FLAGS_cpu_deterministic is ",
            flag,
        )

    def _set_env(self, check_flag):
        paddle.set_flags({"FLAGS_check_nan_inf": check_flag})
        if check_flag:
            # set debug level
            paddle.set_flags(
                {"FLAGS_check_nan_inf_level": self.debug_mode.value}
            )

            # set output_dir
229 230
            if self.output_dir is not None:
                paddle.fluid.core.set_nan_inf_debug_path(self.output_dir)
231 232 233

            # set stack_height_limit
            if isinstance(self.stack_height_limit, (int)):
234 235
                paddle.fluid.core.set_nan_inf_stack_limit(
                    self.stack_height_limit
236 237 238 239
                )
            else:
                raise ValueError("stack_height_limit must be int")

240
    def update_and_check_step_id(self):
241 242 243
        if self.enable:
            if self.start_step is not None and self.end_step is not None:
                if (
244 245
                    self.start_step > TensorCheckerConfig.current_step_id
                    or TensorCheckerConfig.current_step_id >= self.end_step
246 247 248
                ):
                    return False
                else:
249
                    TensorCheckerConfig.current_step_id += 1
250 251 252
            return True
        return False

253
    def start_check_nan_inf(self):
254 255 256
        if self.enable:
            self._set_env(self.enable)

257
    def stop_check_nan_inf(self):
258 259 260
        self._set_env(False)


261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
def _get_operator_stats_flag():
    flags = paddle.get_flags(["FLAGS_low_precision_op_list"])
    return flags["FLAGS_low_precision_op_list"]


def _print_operator_stats(op_count_dict):
    """
    Parse and print the stats of operators, mainly including the calls of
    dtypes such as different fp32, fp16, bf16 and others.

    Args:
        op_count_dict(dict): a dict to record the number of calls for different
            operator and dtype. An example is
            {'conv2d': '1,0,0,0', 'elementwise_add': '1,0,0,0'} or
            {'conv2d': [1, 0, 0, 0], 'elementwise_add': [1, 0, 0, 0]}.
    """
    print("<{:-^120}>".format(" op list "))
    total_ops = 0
    print(
        "<{:-^40}".format(" Op Name "),
        "|",
        "{:-^17}".format(" FP16 Calls "),
        "|",
        "{:-^17}".format(" BF16 Calls "),
        "|",
        "{:-^17}".format(" FP32 Calls"),
        "|",
        "{:-^17}>".format(" Other Calls "),
    )
    if op_count_dict is not None and isinstance(op_count_dict, dict):
291
        for op_type in sorted(op_count_dict):
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
            # fp16, bf16, fp32, other
            value = op_count_dict[op_type]
            if isinstance(value, list):
                called = value
            elif isinstance(value, str):
                called = value.split(",")
            else:
                raise ValueError(
                    "Input {} is expected to be a list of str, but recieved {}.".format(
                        value, type(value)
                    )
                )
            print(
                "  %-40s|  %-17s|  %-17s|  %-17s|  %-17s"
                % (op_type, called[0], called[1], called[2], called[3])
            )
            total_ops += 1
    print("<{:-^120}>\n".format(" op count: " + str(total_ops) + " "))


@dygraph_only
def enable_operator_stats_collection():
    """
    Enable to collect the number of operators for different data types.
    The statistical data are categorized according to four data types, namely
    float32, float16, bfloat16 and others. This funciton is used in pair with
    the corresponding disable function.

    Examples:

322
        ..  code-block:: python
323

324
            import paddle
325

326 327
            conv = paddle.nn.Conv2D(3, 2, 3)
            x = paddle.rand([10, 3, 32, 32])
328

329 330 331 332 333 334 335 336 337 338 339 340 341
            paddle.amp.debugging.enable_operator_stats_collection()
            # AMP list including conv2d, elementwise_add, reshape2, cast (transfer_dtype)
            with paddle.amp.auto_cast(enable=True, level='O2'):
                out = conv(x)
            # Print to the standard output.
            paddle.amp.debugging.disable_operator_stats_collection()
            # <------------------------------------------------------- op list -------------------------------------------------------->
            # <--------------- Op Name ---------------- | -- FP16 Calls --- | -- BF16 Calls --- | --- FP32 Calls--- | -- Other Calls -->
            #   conv2d                                  |  1                |  0                |  0                |  0
            #   elementwise_add                         |  1                |  0                |  0                |  0
            #   reshape2                                |  1                |  0                |  0                |  0
            #   transfer_dtype                          |  0                |  0                |  3                |  0
            # <----------------------------------------------------- op count: 4 ------------------------------------------------------>
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

    """
    # Clear the previous stats.
    paddle.fluid.core.clear_low_precision_op_list()
    paddle.set_flags({'FLAGS_low_precision_op_list': 1})


@dygraph_only
def disable_operator_stats_collection():
    """
    Disable the collection the number of operators for different data types.
    This funciton is used in pair with the corresponding enable function.
    The statistical data are categorized according to four data types, namely
    float32, float16, bfloat16 and others, and will be printed after the
    function call.

    Examples:

360
        ..  code-block:: python
361

362
            import paddle
363

364 365
            conv = paddle.nn.Conv2D(3, 2, 3)
            x = paddle.rand([10, 3, 32, 32])
366

367 368 369 370 371 372 373 374 375 376 377 378 379
            paddle.amp.debugging.enable_operator_stats_collection()
            # AMP list including conv2d, elementwise_add, reshape2, cast (transfer_dtype)
            with paddle.amp.auto_cast(enable=True, level='O2'):
                out = conv(x)
            # Print to the standard output.
            paddle.amp.debugging.disable_operator_stats_collection()
            # <------------------------------------------------------- op list -------------------------------------------------------->
            # <--------------- Op Name ---------------- | -- FP16 Calls --- | -- BF16 Calls --- | --- FP32 Calls--- | -- Other Calls -->
            #   conv2d                                  |  1                |  0                |  0                |  0
            #   elementwise_add                         |  1                |  0                |  0                |  0
            #   reshape2                                |  1                |  0                |  0                |  0
            #   transfer_dtype                          |  0                |  0                |  3                |  0
            # <----------------------------------------------------- op count: 4 ------------------------------------------------------>
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

    """
    if not _get_operator_stats_flag():
        return

    op_count_dict = paddle.fluid.core.get_low_precision_op_list()
    _print_operator_stats(op_count_dict)
    paddle.set_flags({'FLAGS_low_precision_op_list': 0})


@dygraph_only
@contextlib.contextmanager
def collect_operator_stats():
    """
    The context switcher to enable to collect the number of operators for
    different data types. The statistical data are categorized according
    to four data types, namely float32, float16, bfloat16 and others, and
    will be printed when exiting the context.

    Examples:

401
        ..  code-block:: python
402

403
            import paddle
404

405 406
            conv = paddle.nn.Conv2D(3, 2, 3)
            x = paddle.rand([10, 3, 32, 32])
407

408 409 410 411 412 413 414 415 416 417 418 419
            with paddle.amp.debugging.collect_operator_stats():
                # AMP list including conv2d, elementwise_add, reshape2, cast (transfer_dtype)
                with paddle.amp.auto_cast(enable=True, level='O2'):
                    out = conv(x)
            # Print to the standard output.
            # <------------------------------------------------------- op list -------------------------------------------------------->
            # <--------------- Op Name ---------------- | -- FP16 Calls --- | -- BF16 Calls --- | --- FP32 Calls--- | -- Other Calls -->
            #   conv2d                                  |  1                |  0                |  0                |  0
            #   elementwise_add                         |  1                |  0                |  0                |  0
            #   reshape2                                |  1                |  0                |  0                |  0
            #   transfer_dtype                          |  0                |  0                |  3                |  0
            # <----------------------------------------------------- op count: 4 ------------------------------------------------------>
420 421 422 423 424

    """
    enable_operator_stats_collection()
    yield
    disable_operator_stats_collection()
425 426 427 428


def enable_tensor_checker(checker_config):
    """
429
    The enable_tensor_checker(checker_config) function enables model-level accuracy checking and is used in combination with disables_tensor_checker() to achieve model-level precision checking by checking the output Tensors of all operators within the specified range.
430

431 432
    Args:
        checker_config(TensorCheckerConfig): Checker_config is to collect the configuration for checking NaN and Inf values in the tensors of a module or operator.
433

434 435 436
    Note:
        If disable_tensor_checker() is called before backward(), the gradient operator will not be checked.
        If disable_tensor_checker() is called before optimizer.step(), the optimizer and other weight update related operators will not be checked.
437 438 439

    Examples:

440 441 442 443 444 445
        ..  code-block:: python

            import paddle

            checker_config = paddle.amp.debugging.TensorCheckerConfig(enable=True, debug_mode=paddle.amp.debugging.DebugMode.CHECK_NAN_INF)
            paddle.amp.debugging.enable_tensor_checker(checker_config)
446

447 448 449 450 451 452 453 454 455 456 457 458 459
            x = paddle.to_tensor([1, 0, 3], place=paddle.CPUPlace(), dtype='float32', stop_gradient=False)
            y = paddle.to_tensor([0.2, 0, 0.5], place=paddle.CPUPlace(), dtype='float32')
            res = paddle.pow(x, y)
            paddle.autograd.backward(res, retain_graph=True)
            paddle.amp.debugging.disable_tensor_checker()
            #[PRECISION] [ERROR] in [device=cpu, op=elementwise_pow_grad, tensor=, dtype=fp32], numel=3, num_nan=1, num_inf=0, num_zero=0, max=2.886751e-01, min=2.000000e-01, mean=-nan

            # when DebugMode.CHECK_NAN_INF_AND_ABORT and stack_height_limit = 1
            # Traceback (most recent call last):
            #   File "tp.py", line 8, in <module>
            #     res = paddle.pow(x, y)
            #   File "/usr/local/lib/python3.8/dist-packages/paddle/tensor/math.py", line 447, in pow
            #     return _C_ops.elementwise_pow(x, y)
460 461

    """
462 463
    if checker_config.update_and_check_step_id():
        checker_config.start_check_nan_inf()
464
    else:
465
        checker_config.stop_check_nan_inf()
466 467 468 469


def disable_tensor_checker():
    """
470
    disable_tensor_checker() is used to disable accuracy checking, and is used together with enable_tensor_checker(config) to achieve model-level precision checking by checking the output Tensors of all operators within the specified range.
471

472 473 474
    Note:
        If disable_tensor_checker() is called before backward(), the gradient operator will not be checked;
        If disable_tensor_checker() is called before optimizer.step(), the optimizer and other weight update related operators will not be checked.
475

476
    Examples:
477

478
        ..  code-block:: python
479

480
            import paddle
481

482 483
            checker_config = paddle.amp.debugging.TensorCheckerConfig(enable=True, debug_mode=paddle.amp.debugging.DebugMode.CHECK_NAN_INF)
            paddle.amp.debugging.enable_tensor_checker(checker_config)
484

485 486 487 488 489 490
            x = paddle.to_tensor([1, 0, 3], place=paddle.CPUPlace(), dtype='float32', stop_gradient=False)
            y = paddle.to_tensor([0.2, 0, 0.5], place=paddle.CPUPlace(), dtype='float32')
            res = paddle.pow(x, y)
            paddle.autograd.backward(res, retain_graph=True)
            paddle.amp.debugging.disable_tensor_checker()
            #[PRECISION] [ERROR] in [device=cpu, op=elementwise_pow_grad, tensor=, dtype=fp32], numel=3, num_nan=1, num_inf=0, num_zero=0, max=2.886751e-01, min=2.000000e-01, mean=-nan
491

492 493 494 495 496
            # when DebugMode.CHECK_NAN_INF_AND_ABORT and stack_height_limit = 1
            # Traceback (most recent call last):
            #     res = paddle.pow(x, y)
            #   File "/usr/local/lib/python3.8/dist-packages/paddle/tensor/math.py", line 447, in pow
            #     return _C_ops.elementwise_pow(x, y)
497 498 499

    """
    paddle.set_flags({"FLAGS_check_nan_inf": 0})