dist_word2vec.py 4.6 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

T
typhoonzero 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
import numpy as np
import argparse
import time
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
from test_dist_base import TestDistRunnerBase, runtime_main

IS_SPARSE = True
EMBED_SIZE = 32
HIDDEN_SIZE = 256
N = 5

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


class TestDistWord2vec2x2(TestDistRunnerBase):
    def get_model(self, batch_size=2):
        BATCH_SIZE = batch_size

        def __network__(words):
            embed_first = fluid.layers.embedding(
                input=words[0],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
52 53
                    name='shared_w',
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
54 55 56 57 58 59
            embed_second = fluid.layers.embedding(
                input=words[1],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
60 61
                    name='shared_w',
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
62 63 64 65 66 67
            embed_third = fluid.layers.embedding(
                input=words[2],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
68 69
                    name='shared_w',
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
70 71 72 73 74 75
            embed_forth = fluid.layers.embedding(
                input=words[3],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
76 77
                    name='shared_w',
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
78 79 80 81 82 83 84 85 86

            concat_embed = fluid.layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)
            hidden1 = fluid.layers.fc(
                input=concat_embed,
                size=HIDDEN_SIZE,
                act='sigmoid',
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
87
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
88 89 90 91 92
            predict_word = fluid.layers.fc(
                input=hidden1,
                size=dict_size,
                act='softmax',
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
93
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
            cost = fluid.layers.cross_entropy(
                input=predict_word, label=words[4])
            avg_cost = fluid.layers.mean(cost)
            return avg_cost, predict_word

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

        first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
        second_word = fluid.layers.data(
            name='secondw', shape=[1], dtype='int64')
        third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
        forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
        next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
        avg_cost, predict_word = __network__(
            [first_word, second_word, third_word, forth_word, next_word])

        inference_program = paddle.fluid.default_main_program().clone()

        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost)

        train_reader = paddle.batch(
            paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
        test_reader = paddle.batch(
            paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE)

        return inference_program, avg_cost, train_reader, test_reader, None, predict_word


if __name__ == "__main__":
    runtime_main(TestDistWord2vec2x2)