hook_test.cc 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <sstream>

#include "glog/logging.h"
#include "gtest/gtest.h"

#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
#include "paddle/fluid/eager/grad_node_info.h"

#include "paddle/fluid/eager/api/all.h"

#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/tensor_meta.h"

#include "paddle/fluid/eager/tests/test_utils.h"

using namespace egr;  // NOLINT

namespace eager_test {

egr::EagerTensor hook_function(const egr::EagerTensor& t) {
  auto t_dense = std::dynamic_pointer_cast<pten::DenseTensor>(t.impl());

  auto ret_meta = pten::DenseTensorMeta(t_dense->dtype(), t_dense->dims(),
                                        t_dense->layout());
  auto place = t_dense->place();
  size_t bytes_size =
      paddle::framework::product(t_dense->dims()) * SizeOf(t_dense->dtype());
  auto ret_dense = std::make_shared<pten::DenseTensor>(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          paddle::memory::Alloc(place, bytes_size), 0),
      std::move(ret_meta));

  float* t_ptr = t_dense->mutable_data<float>();
  float* ret_ptr = ret_dense->mutable_data<float>();
  for (int i = 0; i < ret_dense->numel(); i++) {
    ret_ptr[i] = t_ptr[i] + 3.0;
  }

  auto ret_impl = std::dynamic_pointer_cast<pten::TensorBase>(ret_dense);
  egr::EagerTensor ret = egr::EagerTensor();
  ret.set_impl(ret_impl);

  return ret;
}

TEST(RetainGrad, HookBeforeRetainGrad) {
  InitEnv(paddle::platform::CPUPlace());

  // Prepare Inputs
  std::vector<egr::EagerTensor> target_tensors;
  paddle::framework::DDim ddim = paddle::framework::make_ddim({4, 16, 16, 32});

  // Create Target Tensor
  egr::EagerTensor tensor = CreateTensorWithValue(
      ddim, paddle::platform::CPUPlace(), pten::DataType::FLOAT32,
      pten::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/);
  target_tensors.emplace_back(std::move(tensor));
  egr::EagerTensor& target_tensor = target_tensors[0];

  // Create ScaleNode
  auto scale_node_ptr = std::make_shared<GradNodeScale>(1, 1);
  scale_node_ptr->SetAttributes_scale(5.0 /*scale*/);

  // Set grad in/out meta for node0
  scale_node_ptr->SetDefaultGradInOutMeta();

  // Create AccumulationNode
  auto acc_node_ptr = std::make_shared<GradNodeAccumulation>();

  // Connect Input Tensor and ScaleNode via AutoGradMeta
  // Apply RetainGrad
  {
    // ScaleNode Hook: +3
    std::function<egr::EagerTensor(const egr::EagerTensor&)> hook =
        &hook_function;

    auto auto_grad_meta = std::make_shared<AutogradMeta>();
    auto_grad_meta->SetGradNode(
        std::dynamic_pointer_cast<GradNodeBase>(scale_node_ptr));
    auto_grad_meta->SetSingleOutRankWithSlot(0, 0);
    target_tensor.set_autograd_meta(
        std::dynamic_pointer_cast<paddle::experimental::AbstractAutogradMeta>(
            auto_grad_meta));

    RegisterGradientHookForTensor(target_tensor, hook);
    RetainGradForTensor(target_tensor);  // result: 1.0 + 3.0 = 4.0
  }

  // Connect ScaleNode -> AccumulationNode via Edge
  {
    auto meta = AutogradMeta();
    meta.SetSingleOutRankWithSlot(0, 0);
    meta.SetGradNode(acc_node_ptr);
    scale_node_ptr->AddEdges({&meta}, 0);
  }

  // Retain Grad for leaf tensor1
  egr::EagerTensor leaf_tensor = egr::EagerTensor();
  {
    // AccumulationNode Hook: +3
    std::function<egr::EagerTensor(const egr::EagerTensor&)> hook =
        &hook_function;

    auto auto_grad_meta = std::make_shared<AutogradMeta>();
    auto_grad_meta->SetGradNode(
        std::dynamic_pointer_cast<GradNodeBase>(acc_node_ptr));
    auto_grad_meta->SetSingleOutRankWithSlot(0, 0);
    leaf_tensor.set_autograd_meta(
        std::dynamic_pointer_cast<paddle::experimental::AbstractAutogradMeta>(
            auto_grad_meta));

    RegisterGradientHookForTensor(leaf_tensor, hook);
    RetainGradForTensor(leaf_tensor);  // result: 4.0*5.0 + 3.0 = 23.0
  }

  RunBackward(target_tensors, {});

  CompareGradTensorWithValue<float>(target_tensor, 4.0);
  CompareGradTensorWithValue<float>(leaf_tensor, 23.0);
}

TEST(RetainGrad, HookAfterRetainGrad) {
  InitEnv(paddle::platform::CPUPlace());

  // Prepare Inputs
  std::vector<egr::EagerTensor> target_tensors;
  paddle::framework::DDim ddim = paddle::framework::make_ddim({4, 16, 16, 32});

  // Create Target Tensor
  egr::EagerTensor tensor = CreateTensorWithValue(
      ddim, paddle::platform::CPUPlace(), pten::DataType::FLOAT32,
      pten::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/);
  target_tensors.emplace_back(std::move(tensor));
  egr::EagerTensor& target_tensor = target_tensors[0];

  // Create ScaleNode
  auto scale_node_ptr = std::make_shared<GradNodeScale>(1, 1);
  scale_node_ptr->SetAttributes_scale(5.0 /*scale*/);
  // Set grad in/out meta for node0
  scale_node_ptr->SetDefaultGradInOutMeta();
  // Create AccumulationNode
  auto acc_node_ptr = std::make_shared<GradNodeAccumulation>();

  // Connect Input Tensor and ScaleNode via AutoGradMeta
  // Apply RetainGrad
  {
    // ScaleNode Hook: +3
    std::function<egr::EagerTensor(const egr::EagerTensor&)> hook =
        &hook_function;

    auto auto_grad_meta = std::make_shared<AutogradMeta>();
    auto_grad_meta->SetGradNode(
        std::dynamic_pointer_cast<GradNodeBase>(scale_node_ptr));
    auto_grad_meta->SetSingleOutRankWithSlot(0, 0);
    target_tensor.set_autograd_meta(
        std::dynamic_pointer_cast<paddle::experimental::AbstractAutogradMeta>(
            auto_grad_meta));

    RetainGradForTensor(target_tensor);  // result: 1.0
    RegisterGradientHookForTensor(target_tensor, hook);
  }

  // Connect ScaleNode -> AccumulationNode via Edge
  {
    auto meta = AutogradMeta();
    meta.SetSingleOutRankWithSlot(0, 0);
    meta.SetGradNode(acc_node_ptr);
    scale_node_ptr->AddEdges({&meta}, 0);
  }

  // Retain Grad for leaf tensor1
  egr::EagerTensor leaf_tensor = egr::EagerTensor();
  {
    // AccumulationNode Hook: +3
    std::function<egr::EagerTensor(const egr::EagerTensor&)> hook =
        &hook_function;

    auto auto_grad_meta = std::make_shared<AutogradMeta>();
    auto_grad_meta->SetGradNode(
        std::dynamic_pointer_cast<GradNodeBase>(acc_node_ptr));
    auto_grad_meta->SetSingleOutRankWithSlot(0, 0);
    leaf_tensor.set_autograd_meta(
        std::dynamic_pointer_cast<paddle::experimental::AbstractAutogradMeta>(
            auto_grad_meta));

    RetainGradForTensor(leaf_tensor);  // RetainGrad for leaf tensor gets
                                       // postponed, result: 4.0*5.0 + 3.0 =
                                       // 23.0
    RegisterGradientHookForTensor(leaf_tensor, hook);
  }

  RunBackward(target_tensors, {});
  CompareGradTensorWithValue<float>(target_tensor, 1.0);
  CompareGradTensorWithValue<float>(leaf_tensor, 23.0);
}

}  // namespace eager_test