evaluators.html 43.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Evaluators &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../../genindex.html"/>
        <link rel="search" title="搜索" href="../../../search.html"/>
35 36 37 38
    <link rel="top" title="PaddlePaddle  文档" href="../../../index.html"/>
        <link rel="up" title="Model Configuration" href="../model_configs.html"/>
        <link rel="next" title="Optimizer" href="optimizer.html"/>
        <link rel="prev" title="Layers" href="layer.html"/> 
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85
        </ul>
      </div>
      <div class="doc-module">
        
86
        <ul class="current">
87 88
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a></li>
89
<li class="toctree-l1 current"><a class="reference internal" href="../../index_cn.html">API</a></li>
90
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a></li>
91
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_cn.html">MOBILE</a></li>
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
112
          <ul class="current">
113 114
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
115
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
116 117 118
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
119
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
120 121 122 123 124 125 126 127 128
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
129
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_cn.html">PaddlePaddle分布式训练</a></li>
130 131 132
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
133
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/build_cn.html">编译PaddlePaddle和运行单元测试</a></li>
134 135
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
136
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
137 138 139 140 141 142 143 144
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
145 146 147 148 149 150 151 152 153
<li class="toctree-l1 current"><a class="reference internal" href="../../index_cn.html">API</a><ul class="current">
<li class="toctree-l2 current"><a class="reference internal" href="../model_configs.html">模型配置</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="layer.html">Layers</a></li>
<li class="toctree-l3 current"><a class="current reference internal" href="#">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="attr.html">Parameter Attribute</a></li>
154 155
</ul>
</li>
156 157 158 159 160 161
<li class="toctree-l2"><a class="reference internal" href="../data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/dataset.html">Dataset</a></li>
</ul>
</li>
162
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">训练与应用</a></li>
163 164
</ul>
</li>
165 166 167 168 169 170 171 172
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
173
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_cn.html">MOBILE</a><ul>
174 175 176
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_android_cn.html">Android平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_ios_cn.html">iOS平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_raspberry_cn.html">Raspberry Pi平台编译指南</a></li>
177 178
</ul>
</li>
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
199 200 201 202
        <li><a href="../../index_cn.html">API</a> > </li>
      
        <li><a href="../model_configs.html">Model Configuration</a> > </li>
      
203 204 205 206 207 208 209 210 211 212
    <li>Evaluators</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="evaluators">
213
<span id="api-v2"></span><h1>Evaluators<a class="headerlink" href="#evaluators" title="永久链接至标题"></a></h1>
214 215
<div class="section" id="classification">
<h2>Classification<a class="headerlink" href="#classification" title="永久链接至标题"></a></h2>
216 217
<div class="section" id="classification-error">
<h3>classification_error<a class="headerlink" href="#classification-error" title="永久链接至标题"></a></h3>
218
<dl class="function">
219
<dt>
220
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">classification_error</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
221 222 223 224 225
<dd><p>Classification Error Evaluator. It will print error rate for classification.</p>
<p>The classification error is:</p>
<div class="math">
\[classification\_error = \frac{NumOfWrongPredicts}{NumOfAllSamples}\]</div>
<p>The simple usage is:</p>
226
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span>  <span class="n">classification_evaluator</span><span class="o">.</span><span class="n">error</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">prob</span><span class="p">,</span><span class="n">label</span><span class="o">=</span><span class="n">lbl</span><span class="p">)</span>
227 228 229 230 231 232 233 234
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; Evaluator name.</li>
235
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Input Layer name. The output prediction of network.</li>
236
<li><strong>label</strong> (<em>basestring</em>) &#8211; Label layer name.</li>
237
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Weight Layer name. It should be a matrix with size
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
[sample_num, 1]. And will just multiply to NumOfWrongPredicts
and NumOfAllSamples. So, the elements of weight are all one,
then means not set weight. The larger weight it is, the more
important this sample is.</li>
<li><strong>top_k</strong> (<em>int</em>) &#8211; number k in top-k error rate</li>
<li><strong>threshold</strong> (<em>float</em>) &#8211; The classification threshold.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last">None.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
255 256
<div class="section" id="auc">
<h3>auc<a class="headerlink" href="#auc" title="永久链接至标题"></a></h3>
257
<dl class="function">
258
<dt>
259
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">auc</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
260 261
<dd><p>Auc Evaluator which adapts to binary classification.</p>
<p>The simple usage:</p>
262
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="n">auc</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
263 264 265 266 267 268 269 270
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
271
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Input Layer name. The output prediction of network.</li>
272
<li><strong>label</strong> (<em>None|basestring</em>) &#8211; Label layer name.</li>
273
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Weight Layer name. It should be a matrix with size
274 275 276 277 278 279 280 281 282
[sample_num, 1].</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
283 284
<div class="section" id="ctc-error">
<h3>ctc_error<a class="headerlink" href="#ctc-error" title="永久链接至标题"></a></h3>
285
<dl class="function">
286
<dt>
287
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">ctc_error</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
288 289
<dd><p>This evaluator is to calculate sequence-to-sequence edit distance.</p>
<p>The simple usage is :</p>
290
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">ctc_evaluator</span><span class="o">.</span><span class="n">error</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">lbl</span><span class="p">)</span>
291 292 293 294 295 296 297 298
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
299 300 301
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Input Layer. Should be the same as the input for ctc.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; input label, which is a data. Should be the same as the
label for ctc</li>
302 303 304 305 306 307 308 309
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
310 311
<div class="section" id="chunk">
<h3>chunk<a class="headerlink" href="#chunk" title="永久链接至标题"></a></h3>
312
<dl class="function">
313
<dt>
314
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">chunk</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
315
<dd><p>Chunk evaluator is used to evaluate segment labelling accuracy for a
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
sequence. It calculates precision, recall and F1 scores for the chunk detection.</p>
<p>To use chunk evaluator, several concepts need to be clarified firstly.</p>
<ul class="simple">
<li><strong>Chunk type</strong> is the type of the whole chunk and a chunk consists of one or several words.  (For example in NER, ORG for organization name, PER for person name etc.)</li>
<li><strong>Tag type</strong> indicates the position of a word in a chunk. (B for begin, I for inside, E for end, S for single)</li>
</ul>
<p>We can name a label by combining tag type and chunk type. (ie. B-ORG for begining of an organization name)</p>
<p>The construction of label dictionary should obey the following rules:</p>
<ul class="simple">
<li>Use one of the listed labelling schemes. These schemes differ in ways indicating chunk boundry.</li>
</ul>
<div class="highlight-text"><div class="highlight"><pre><span></span>Scheme    Description
plain    Use the same label for the whole chunk.
IOB      Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside.
IOE      Two labels for chunk type X, E-X for chunk ending and I-X for chunk inside.
IOBES    Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk.
</pre></div>
</div>
<p>To make it clear, let&#8217;s illustrate by an NER example.
Assuming that there are three named entity types including ORG, PER and LOC which are called &#8216;chunk type&#8217; here,
if &#8216;IOB&#8217; scheme were used, the label set will be extended to a set including B-ORG, I-ORG, B-PER, I-PER, B-LOC, I-LOC and O,
in which B-ORG for begining of ORG and I-ORG for inside of ORG.
Prefixes which are called &#8216;tag type&#8217; here are added to chunk types and there are two tag types including B and I.
Of course, the training data should be labeled accordingly.</p>
<ul class="simple">
<li>Mapping is done correctly by the listed equations and assigning protocol.</li>
</ul>
<p>The following table are equations to extract tag type and chunk type from a label.</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>tagType = label % numTagType
chunkType = label / numTagType
otherChunkType = numChunkTypes
</pre></div>
</div>
<p>The following table shows the mapping rule between tagType and tag type in each scheme.</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>Scheme Begin Inside End   Single
plain  0     -      -     -
IOB    0     1      -     -
IOE    -     0      1     -
IOBES  0     1      2     3
355 356
</pre></div>
</div>
357 358 359 360 361 362 363 364
<p>Continue the NER example, and the label dict should look like this to satify above equations:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>B-ORG  0
I-ORG  1
B-PER  2
I-PER  3
B-LOC  4
I-LOC  5
O      6
365 366
</pre></div>
</div>
367 368 369 370 371
<p>In this example, chunkType has three values: 0 for ORG, 1 for PER, 2 for LOC, because the scheme is
&#8220;IOB&#8221; so tagType has two values: 0 for B and 1 for I.
Here we will use I-LOC to explain the above mapping rules in detail.
For I-LOC, the label id is 5, so we can get tagType=1 and chunkType=2, which means I-LOC is a part of NER chunk LOC
and the tag is I.</p>
372
<p>The simple usage is:</p>
373
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">chunk_scheme</span><span class="p">,</span> <span class="n">num_chunk_types</span><span class="p">)</span>
374 375 376 377 378 379 380
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
381 382
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input layers.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; An input layer containing the ground truth label.</li>
383 384 385 386 387 388 389 390 391 392 393 394 395
<li><strong>chunk_scheme</strong> (<em>basestring</em>) &#8211; The labelling schemes support 4 types. It is one of
&#8220;IOB&#8221;, &#8220;IOE&#8221;, &#8220;IOBES&#8221;, &#8220;plain&#8221;. It is required.</li>
<li><strong>num_chunk_types</strong> &#8211; number of chunk types other than &#8220;other&#8221;</li>
<li><strong>name</strong> (<em>basename|None</em>) &#8211; The Evaluator name, it is optional.</li>
<li><strong>excluded_chunk_types</strong> (<em>list of integer|None</em>) &#8211; chunks of these types are not considered</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
396 397
<div class="section" id="precision-recall">
<h3>precision_recall<a class="headerlink" href="#precision-recall" title="永久链接至标题"></a></h3>
398
<dl class="function">
399
<dt>
400
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">precision_recall</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
401 402 403 404 405 406 407 408 409
<dd><p>An Evaluator to calculate precision and recall, F1-score.
It is adapt to the task with multiple labels.</p>
<ul class="simple">
<li>If positive_label=-1, it will print the average precision, recall,
F1-score of all labels.</li>
<li>If use specify positive_label, it will print the precision, recall,
F1-score of this label.</li>
</ul>
<p>The simple usage:</p>
410
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">precision_evaluator</span><span class="o">.</span><span class="n">recall</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
411 412 413 414 415 416 417 418
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
419 420 421 422
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Label layer name.</li>
<li><strong>positive_label</strong> (<em>paddle.v2.config_base.Layer.</em>) &#8211; The input label layer.</li>
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Weight Layer name. It should be a matrix with size
423 424 425 426 427 428 429 430 431 432 433 434
[sample_num, 1]. (TODO, explaination)</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="rank">
<h2>Rank<a class="headerlink" href="#rank" title="永久链接至标题"></a></h2>
435 436
<div class="section" id="pnpair">
<h3>pnpair<a class="headerlink" href="#pnpair" title="永久链接至标题"></a></h3>
437
<dl class="function">
438
<dt>
439
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">pnpair</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
440 441 442
<dd><p>Positive-negative pair rate Evaluator which adapts to rank task like
learning to rank. This evaluator must contain at least three layers.</p>
<p>The simple usage:</p>
443
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="n">pnpair</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">query_id</span><span class="p">)</span>
444 445 446 447 448 449 450
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
451 452
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Label layer name.</li>
453 454 455
<li><strong>query_id</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Query_id layer name. Query_id indicates that which query
each sample belongs to. Its shape should be
the same as output of Label layer.</li>
456
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Weight Layer name. It should be a matrix with size
457 458 459
[sample_num, 1] which indicates the weight of each sample.
The default weight of sample is 1 if the weight layer is None.
And the pair weight is the mean of the two samples&#8217; weight.</li>
460
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
461 462 463 464 465 466 467 468 469 470 471
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="utils">
<h2>Utils<a class="headerlink" href="#utils" title="永久链接至标题"></a></h2>
472 473
<div class="section" id="sum">
<h3>sum<a class="headerlink" href="#sum" title="永久链接至标题"></a></h3>
474
<dl class="function">
475
<dt>
476
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">sum</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
477 478
<dd><p>An Evaluator to sum the result of input.</p>
<p>The simple usage:</p>
479
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
480 481 482 483 484 485 486 487
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
488 489
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Input Layer name.</li>
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Weight Layer name. It should be a matrix with size
490 491 492 493 494 495 496 497 498
[sample_num, 1]. (TODO, explaination)</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
499 500
<div class="section" id="column-sum">
<h3>column_sum<a class="headerlink" href="#column-sum" title="永久链接至标题"></a></h3>
501
<dl class="function">
502
<dt>
503
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">column_sum</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
504 505
<dd><p>This Evaluator is used to sum the last column of input.</p>
<p>The simple usage is:</p>
506
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">column_evaluator</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
507 508 509 510 511 512 513 514
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
515
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Input Layer name.</li>
516 517 518 519 520 521 522 523 524 525 526
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="print">
<h2>Print<a class="headerlink" href="#print" title="永久链接至标题"></a></h2>
527 528
<div class="section" id="classification-error-printer">
<h3>classification_error_printer<a class="headerlink" href="#classification-error-printer" title="永久链接至标题"></a></h3>
529
<dl class="function">
530
<dt>
531
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">classification_error_printer</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
532 533
<dd><p>This Evaluator is used to print the classification error of each sample.</p>
<p>The simple usage is:</p>
534
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">classification_error_evaluator</span><span class="o">.</span><span class="n">printer</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
535 536 537 538 539 540 541
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
542 543
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Input layer.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Input label layer.</li>
544 545 546 547 548 549 550 551 552
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
553 554
<div class="section" id="gradient-printer">
<h3>gradient_printer<a class="headerlink" href="#gradient-printer" title="永久链接至标题"></a></h3>
555
<dl class="function">
556
<dt>
557
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">gradient_printer</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
558 559 560
<dd><p>This Evaluator is used to print the gradient of input layers. It contains
one or more input layers.</p>
<p>The simple usage is:</p>
561
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">gradient_evaluator</span><span class="o">.</span><span class="n">printer</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
562 563 564 565 566 567 568
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
569
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer|list</em>) &#8211; One or more input layers.</li>
570 571 572 573 574 575 576 577 578
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
579 580
<div class="section" id="maxid-printer">
<h3>maxid_printer<a class="headerlink" href="#maxid-printer" title="永久链接至标题"></a></h3>
581
<dl class="function">
582
<dt>
583
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">maxid_printer</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
584 585 586 587
<dd><p>This Evaluator is used to print maximum top k values and their indexes
of each row of input layers. It contains one or more input layers.
k is specified by num_results.</p>
<p>The simple usage is:</p>
588
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">maxid_evaluator</span><span class="o">.</span><span class="n">printer</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
589 590 591 592 593 594 595
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
596
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer|list</em>) &#8211; Input Layer name.</li>
597 598 599 600 601 602 603 604 605 606 607
<li><strong>num_results</strong> (<em>int.</em>) &#8211; This number is used to specify the top k numbers.
It is 1 by default.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
608 609
<div class="section" id="maxframe-printer">
<h3>maxframe_printer<a class="headerlink" href="#maxframe-printer" title="永久链接至标题"></a></h3>
610
<dl class="function">
611
<dt>
612
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">maxframe_printer</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
613 614 615 616 617 618 619 620 621
<dd><p>This Evaluator is used to print the top k frames of each input layers.
The input layers should contain sequences info or sequences type.
k is specified by num_results.
It contains one or more input layers.</p>
<div class="admonition note">
<p class="first admonition-title">注解</p>
<p class="last">The width of each frame is 1.</p>
</div>
<p>The simple usage is:</p>
622
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">maxframe_evaluator</span><span class="o">.</span><span class="n">printer</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
623 624 625 626 627 628 629
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
630
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer|list</em>) &#8211; Input Layer name.</li>
631 632 633 634 635 636 637 638 639
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
640 641
<div class="section" id="seqtext-printer">
<h3>seqtext_printer<a class="headerlink" href="#seqtext-printer" title="永久链接至标题"></a></h3>
642
<dl class="function">
643
<dt>
644
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">seqtext_printer</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
<dd><p>Sequence text printer will print text according to index matrix and a
dictionary. There can be multiple input to this layer:</p>
<p>1. If there is no id_input, the input must be a matrix containing
the sequence of indices;</p>
<ol class="arabic simple" start="2">
<li>If there is id_input, it should be ids, and interpreted as sample ids.</li>
</ol>
<p>The output format will be:</p>
<ol class="arabic simple">
<li>sequence without sub-sequence, and there is probability.</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">id</span>      <span class="n">prob</span> <span class="n">space_seperated_tokens_from_dictionary_according_to_seq</span>
</pre></div>
</div>
<ol class="arabic simple" start="2">
<li>sequence without sub-sequence, and there is not probability.</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">id</span>      <span class="n">space_seperated_tokens_from_dictionary_according_to_seq</span>
</pre></div>
</div>
<ol class="arabic simple" start="3">
<li>sequence with sub-sequence, and there is not probability.</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">id</span>      <span class="n">space_seperated_tokens_from_dictionary_according_to_sub_seq</span>
                <span class="n">space_seperated_tokens_from_dictionary_according_to_sub_seq</span>
<span class="o">...</span>
</pre></div>
</div>
<p>Typically SequenceTextPrinter layer takes output of maxid or RecurrentGroup
with maxid (when generating) as an input.</p>
<p>The simple usage is:</p>
676
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">seqtext_evaluator</span><span class="o">.</span><span class="n">printer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">maxid</span><span class="p">,</span>
677 678 679 680 681 682 683 684 685 686
                                 <span class="n">id_input</span><span class="o">=</span><span class="n">sample_id</span><span class="p">,</span>
                                 <span class="n">dict_file</span><span class="o">=</span><span class="n">dict_file</span><span class="p">,</span>
                                 <span class="n">result_file</span><span class="o">=</span><span class="n">result_file</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
687
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer|list</em>) &#8211; Input Layer name.</li>
688
<li><strong>result_file</strong> (<em>basestring</em>) &#8211; Path of the file to store the generated results.</li>
689
<li><strong>id_input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Index of the input sequence, and the specified index will
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
be prited in the gereated results. This an optional
parameter.</li>
<li><strong>dict_file</strong> (<em>basestring</em>) &#8211; Path of dictionary. This is an optional parameter.
Every line is a word in the dictionary with
(line number - 1) as the word index.
If this parameter is set to None, or to an empty string,
only word index are printed in the generated results.</li>
<li><strong>delimited</strong> (<em>bool</em>) &#8211; Whether to use space to separate output tokens.
Default is True. No space is added if set to False.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">The seq_text_printer that prints the generated sequence to a file.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">evaluator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
714 715
<div class="section" id="value-printer">
<h3>value_printer<a class="headerlink" href="#value-printer" title="永久链接至标题"></a></h3>
716
<dl class="function">
717
<dt>
718
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">value_printer</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
719 720 721
<dd><p>This Evaluator is used to print the values of input layers. It contains
one or more input layers.</p>
<p>The simple usage is:</p>
722
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">value_evaluator</span><span class="o">.</span><span class="n">printer</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
723 724 725 726 727 728 729
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
730
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer|list</em>) &#8211; One or more input layers.</li>
731 732 733 734 735 736 737 738
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
</div>
</div>
<div class="section" id="detection">
<h2>Detection<a class="headerlink" href="#detection" title="永久链接至标题"></a></h2>
<div class="section" id="detection-map">
<h3>detection_map<a class="headerlink" href="#detection-map" title="永久链接至标题"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.evaluator.</code><code class="descname">detection_map</code><span class="sig-paren">(</span><em>*args</em>, <em>**xargs</em><span class="sig-paren">)</span></dt>
<dd><p>Detection mAP Evaluator. It will print mean Average Precision (mAP) for detection.</p>
<p>The detection mAP Evaluator based on the output of detection_output layer counts
the true positive and the false positive bbox and integral them to get the
mAP.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span>  <span class="n">detection_evaluator</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">det_output</span><span class="p">,</span><span class="n">label</span><span class="o">=</span><span class="n">lbl</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Input layer.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Label layer.</li>
<li><strong>overlap_threshold</strong> (<em>float</em>) &#8211; The bbox overlap threshold of a true positive.</li>
<li><strong>background_id</strong> (<em>int</em>) &#8211; The background class index.</li>
<li><strong>evaluate_difficult</strong> (<em>bool</em>) &#8211; Whether evaluate a difficult ground truth.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

773 774 775 776 777 778 779 780 781
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  
782 783 784 785 786 787 788 789 790
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="optimizer.html" class="btn btn-neutral float-right" title="Optimizer" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
        <a href="layer.html" class="btn btn-neutral" title="Layers" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
821 822
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
823 824 825 826 827 828
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../../_static/translations.js"></script>
829
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
830 831 832 833 834 835 836 837 838 839 840 841 842
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
843
</html>