test_base_layer.py 14.6 KB
Newer Older
X
polish  
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

18
import paddle
X
polish  
Xin Pan 已提交
19
import paddle.fluid as fluid
20 21
from paddle.fluid.dygraph import to_variable
from paddle.fluid.framework import ParamBase
22
from paddle.jit import ProgramTranslator
X
polish  
Xin Pan 已提交
23 24


25
class L1(fluid.Layer):
26 27
    def __init__(self):
        super(L1, self).__init__()
28 29 30 31 32 33
        self._param_attr = fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.1))
        self.w1 = self.create_parameter(
            attr=self._param_attr, shape=[2, 2], dtype='float32', is_bias=False)
        self.w2 = self.create_parameter(
            attr=self._param_attr, shape=[2, 2], dtype='float32', is_bias=False)
X
polish  
Xin Pan 已提交
34 35 36 37 38

    def forward(self):
        return self.w1 + self.w2


39
class L2(fluid.Layer):
40 41 42 43
    def __init__(self):
        super(L2, self).__init__()
        self.layer1 = L1()
        self.layer2 = L1()
X
polish  
Xin Pan 已提交
44 45 46 47 48

    def forward(self):
        return self.layer1() + self.layer2()


49
class L3(fluid.Layer):
50 51 52 53
    def __init__(self):
        super(L3, self).__init__()
        self.layer1 = L2()
        self.layer2 = L2()
X
polish  
Xin Pan 已提交
54 55 56 57 58 59 60

    def forward(self):
        return self.layer1() + self.layer2()


class TestBaseLayer(unittest.TestCase):
    def test_one_level(self):
L
lujun 已提交
61
        with fluid.dygraph.guard():
62
            l = L1()
X
polish  
Xin Pan 已提交
63
            ret = l()
64 65 66 67 68
            expected_names = ['l1.w1', 'l1.w2']
            idx = 0
            for name, _ in l.named_parameters(prefix='l1'):
                self.assertEqual(name, expected_names[idx])
                idx += 1
69
            self.assertTrue(np.allclose(ret.numpy(), 0.2 * np.ones([2, 2])))
X
polish  
Xin Pan 已提交
70 71

    def test_three_level(self):
L
lujun 已提交
72
        with fluid.dygraph.guard():
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            l = L3()
            expected_names = [
                'l3.layer1.layer1.w1',
                'l3.layer1.layer1.w2',
                'l3.layer1.layer2.w1',
                'l3.layer1.layer2.w2',
                'l3.layer2.layer1.w1',
                'l3.layer2.layer1.w2',
                'l3.layer2.layer2.w1',
                'l3.layer2.layer2.w2',
            ]
            idx = 0
            for name, _ in l.named_parameters(prefix='l3'):
                self.assertEqual(name, expected_names[idx])
                idx += 1
X
polish  
Xin Pan 已提交
88
            ret = l()
89
            self.assertTrue(np.allclose(ret.numpy(), 0.8 * np.ones([2, 2])))
X
polish  
Xin Pan 已提交
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    def test_add_parameter_with_error(self):
        with fluid.dygraph.guard():
            net = fluid.Layer()
            param = net.create_parameter(shape=[1])

            with self.assertRaises(TypeError):
                net.add_parameter(10, param)

            with self.assertRaises(KeyError):
                net.add_parameter("param.name", param)

            with self.assertRaises(KeyError):
                net.add_parameter("", param)

            with self.assertRaises(KeyError):
                net.test_param = 10
                net.add_parameter("test_param", param)

            with self.assertRaises(TypeError):
                net.add_parameter("no_param", 10)

            load_param = net.create_parameter(shape=[1])
            net._loaddict_holder[load_param.name] = load_param
            net.add_parameter("load_param", load_param)

X
polish  
Xin Pan 已提交
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
class BufferLayer(fluid.Layer):
    def __init__(self):
        super(BufferLayer, self).__init__()
        buffer_var = to_variable(np.zeros([2, 4]).astype('int32'))
        self.register_buffer("layer_buffer", buffer_var)

    def forward(self):
        pass


class BufferNet(fluid.Layer):
    def __init__(self):
        super(BufferNet, self).__init__()
        self.buffer_layer = BufferLayer()
        self.w1 = self.create_parameter(
            shape=[2, 2], dtype='float32', is_bias=False)
        buffer_var = to_variable(np.ones([2, 4]).astype('int32'))
        self.register_buffer("net_buffer", buffer_var)

        self.new_buffer = to_variable(np.ones([4, 2]).astype('int32'))

    def forward(self):
        pass


class TestBuffer(unittest.TestCase):
    def test_buffers_and_named_buffers(self):
        def names(named_buffers):
            return [name for name, _ in named_buffers]

        with fluid.dygraph.guard():
            layer = BufferLayer()
            net = BufferNet()

            self.assertEqual(len(layer.buffers()), 1)
            self.assertEqual(names(layer.named_buffers()), ['layer_buffer'])

            self.assertEqual(len(net.buffers()), 3)
            self.assertEqual(
                names(net.named_buffers()),
                ['net_buffer', 'new_buffer', 'buffer_layer.layer_buffer'])

            self.assertEqual(len(net.buffers(include_sublayers=False)), 2)
            self.assertEqual(
                names(net.named_buffers(include_sublayers=False)),
                ['net_buffer', 'new_buffer'])

    def test_register_buffer_with_error(self):
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var = to_variable(np.zeros([1]))

            with self.assertRaisesRegexp(TypeError,
                                         "name of buffer should be a string"):
                net.register_buffer(12, var)

            with self.assertRaisesRegexp(TypeError,
                                         "buffer should be a core.VarBase"):
                net.register_buffer("buffer_name", ParamBase([2, 2], 'float32'))

            with self.assertRaisesRegexp(KeyError,
                                         "name of buffer can not contain"):
                net.register_buffer("buffer.name", var)

            with self.assertRaisesRegexp(KeyError,
                                         "name of buffer can not be empty"):
                net.register_buffer("", var)

            net.attr_name = 10
            with self.assertRaisesRegexp(KeyError, "already exists"):
                net.register_buffer("attr_name", var)

            del net.attr_name
            net.attr_name = ParamBase([2, 2], 'float32')
            with self.assertRaisesRegexp(KeyError, "already exists"):
                net.register_buffer("attr_name", var)

    def test_register_buffer_same_name(self):
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([1]))
            var2 = to_variable(np.zeros([2]))
            var3 = to_variable(np.zeros([3]))

            net.register_buffer("buffer_name", var1)
            self.assert_var_base_equal(net.buffer_name, var1)
            net.register_buffer("buffer_name", var2)
            self.assert_var_base_equal(net.buffer_name, var2)
            net.register_buffer("buffer_name", var3)
            self.assert_var_base_equal(net.buffer_name, var3)

    def test_buffer_not_persistable(self):
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([1]))

            net.register_buffer("buffer_name", var1, persistable=False)
            self.assertEqual(len(net.buffers()), 1)
            self.assertEqual(len(net.state_dict()), 0)

    def test_buffer_not_persistable_del(self):
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([1]))
            net.register_buffer("buffer_name", var1, persistable=False)
            del net.buffer_name
            self.assertEqual(len(net.buffers()), 0)

    def test_buffer_not_persistable_overwrite(self):
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([1]))
            var2 = to_variable(np.zeros([2]))
            net.register_buffer("buffer_name", var1, persistable=False)
            net.register_buffer("buffer_name", var2)

            # Allow to overwrite a non-persistable buffer with a persistable var.
            self.assertEqual(len(net.buffers()), 1)
            self.assertEqual(len(net.state_dict()), 1)

            net.register_buffer("buffer_name", var1, persistable=False)
            self.assertEqual(len(net.buffers()), 1)
            self.assertEqual(len(net.state_dict()), 0)

    def test_buffer_not_persistable_assign(self):
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([1]))
            net.register_buffer("buffer_name", var1, persistable=False)

            # Assigning Nones will remove the buffer, but allow to re-assign
            # to remark it as buffer.
            net.buffer_name = None
            self.assertEqual(len(net.buffers()), 0)
            self.assertEqual(len(net.state_dict()), 0)

            net.buffer_name = var1
            self.assertEqual(len(net.buffers()), 1)
            self.assertEqual(len(net.state_dict()), 0)

            # Re-assign a ParamBase will remove the buffer.
            net.buffer_name = ParamBase([2, 2], 'float32')
            self.assertEqual(len(net.buffers()), 0)
            self.assertEqual(len(net.state_dict()), 1)

    def test_buffer_not_persistable_load(self):
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([1]))
            net.register_buffer("buffer_name", var1, persistable=False)
            net.load_dict({})

    def test_buffer_state_dict(self):
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([2, 3]))
            var2 = to_variable(np.zeros([3, 2]))
            net.register_buffer("buffer_var1", var1)
            net.register_buffer("buffer_var2", var2, persistable=False)

            self.assertEqual(len(net.state_dict()), 1)
            self.assertEqual([name for name, _ in net.state_dict().items()],
                             ["buffer_var1"])

            # load state_dict
            net_load = fluid.Layer()
            var = to_variable(np.ones([2, 3]))
            net_load.register_buffer("buffer_var1", var)
            net_load.load_dict(net.state_dict())

            self.assert_var_base_equal(net_load.buffer_var1, var1)

    def assert_var_base_equal(self, var1, var2):
        self.assertTrue(np.array_equal(var1.numpy(), var2.numpy()))


293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
class BufferNetWithModification(paddle.nn.Layer):
    def __init__(self, shape):
        super(BufferNetWithModification, self).__init__()

        self.buffer1 = paddle.zeros(shape, 'int32')
        self.buffer2 = paddle.zeros(shape, 'int32')

    @paddle.jit.to_static
    def forward(self, x):
        self.buffer1 += x
        self.buffer2 = self.buffer1 + x

        out = self.buffer1 + self.buffer2

        return out


class TestModifiedBuffer(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
        self.prog_trans = ProgramTranslator()
        self.shape = [10, 16]

    def _run(self, to_static=False):
        self.prog_trans.enable(to_static)

        x = paddle.ones([1], 'int32')
        net = BufferNetWithModification(self.shape)
        out = net(x)

        return out, net.buffer1, net.buffer2

    def test_modified(self):
        dy_outs = self._run(False)
        st_outs = self._run(True)

        for i in range(len(dy_outs)):
            self.assertTrue(
                np.array_equal(dy_outs[i].numpy(), st_outs[i].numpy()))


C
chentianyu03 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
class TestLayerTo(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
        self.linear = paddle.nn.Linear(2, 2)
        self.new_grad = np.random.random([2, 2])
        self.linear.weight._set_grad_ivar(paddle.to_tensor(self.new_grad))
        buffer = paddle.to_tensor([0.0], dtype='float32')
        self.linear.register_buffer("buf_name", buffer, persistable=True)

        sublayer = paddle.nn.Conv1D(3, 2, 3)
        self.linear.add_sublayer(1, sublayer)

    def test_to_api(self):
        self.linear.to(dtype='double')
        self.assertEqual(self.linear.weight.dtype,
                         paddle.fluid.core.VarDesc.VarType.FP64)
        self.assertEqual(self.linear.buf_name.dtype,
                         paddle.fluid.core.VarDesc.VarType.FP64)
        self.assertTrue(np.allclose(self.linear.weight.grad, self.new_grad))
        self.assertTrue(self.linear.weight._grad_ivar().dtype,
                        paddle.fluid.core.VarDesc.VarType.FP64)

        self.linear.to()
        self.assertEqual(self.linear.weight.dtype,
                         paddle.fluid.core.VarDesc.VarType.FP64)
        self.assertEqual(self.linear.buf_name.dtype,
                         paddle.fluid.core.VarDesc.VarType.FP64)
        self.assertTrue(np.allclose(self.linear.weight.grad, self.new_grad))
        self.assertTrue(self.linear.weight._grad_ivar().dtype,
                        paddle.fluid.core.VarDesc.VarType.FP64)

        if paddle.fluid.is_compiled_with_cuda():
            self.linear.to(device=paddle.CUDAPlace(0))
            self.assertTrue(self.linear.weight.place.is_gpu_place())
            self.assertEqual(self.linear.weight.place.gpu_device_id(), 0)
            self.assertTrue(self.linear.buf_name.place.is_gpu_place())
            self.assertEqual(self.linear.buf_name.place.gpu_device_id(), 0)
            self.assertTrue(self.linear.weight._grad_ivar().place.is_gpu_place(
            ))
            self.assertEqual(
                self.linear.weight._grad_ivar().place.gpu_device_id(), 0)

            self.linear.to(device='gpu:0')
            self.assertTrue(self.linear.weight.place.is_gpu_place())
            self.assertEqual(self.linear.weight.place.gpu_device_id(), 0)
            self.assertTrue(self.linear.buf_name.place.is_gpu_place())
            self.assertEqual(self.linear.buf_name.place.gpu_device_id(), 0)
            self.assertTrue(self.linear.weight._grad_ivar().place.is_gpu_place(
            ))
            self.assertEqual(
                self.linear.weight._grad_ivar().place.gpu_device_id(), 0)

        self.linear.to(device=paddle.CPUPlace())
        self.assertTrue(self.linear.weight.place.is_cpu_place())
        self.assertTrue(self.linear.buf_name.place.is_cpu_place())
        self.assertTrue(self.linear.weight._grad_ivar().place.is_cpu_place())

        self.linear.to(device='cpu')
        self.assertTrue(self.linear.weight.place.is_cpu_place())
        self.assertTrue(self.linear.buf_name.place.is_cpu_place())
        self.assertTrue(self.linear.weight._grad_ivar().place.is_cpu_place())

        self.assertRaises(ValueError, self.linear.to, device=1)

        self.assertRaises(AssertionError, self.linear.to, blocking=1)


X
polish  
Xin Pan 已提交
401 402
if __name__ == '__main__':
    unittest.main()