simnet_dygraph_model_v2.py 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import reduce
16

17 18 19
import paddle


20
class EmbeddingLayer:
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    """
    Embedding Layer class
    """

    def __init__(self, dict_size, emb_dim, name="emb", padding_idx=None):
        """
        initialize
        """
        self.dict_size = dict_size
        self.emb_dim = emb_dim
        self.name = name
        self.padding_idx = padding_idx

    def ops(self):
        """
        operation
        """
        # TODO(huihuangzheng): The original code set the is_sparse=True, but it
        # causes crush in dy2stat. Set it to True after fixing it.
40 41 42 43
        emb = paddle.nn.Embedding(
            self.dict_size,
            self.emb_dim,
            sparse=True,
44
            padding_idx=self.padding_idx,
45
            weight_attr=paddle.ParamAttr(
46
                name=self.name,
47 48 49
                initializer=paddle.nn.initializer.XavierUniform(),
            ),
        )
50 51 52 53

        return emb


54
class FCLayer:
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    """
    Fully Connect Layer class
    """

    def __init__(self, fc_dim, act, name="fc"):
        """
        initialize
        """
        self.fc_dim = fc_dim
        self.act = act
        self.name = name

    def ops(self):
        """
        operation
        """
71 72 73 74 75 76
        fc = FC(
            size=self.fc_dim,
            param_attr=paddle.ParamAttr(name="%s.w" % self.name),
            bias_attr=paddle.ParamAttr(name="%s.b" % self.name),
            act=self.act,
        )
77 78 79
        return fc


80
class ConcatLayer:
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    """
    Connection Layer class
    """

    def __init__(self, axis):
        """
        initialize
        """
        self.axis = axis

    def ops(self, inputs):
        """
        operation
        """
        concat = paddle.concat(x=inputs, axis=self.axis)
        return concat


99
class ReduceMeanLayer:
100 101 102 103 104 105 106 107 108 109 110 111 112 113
    """
    Reduce Mean Layer class
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, input):
        """
        operation
        """
C
chentianyu03 已提交
114
        mean = paddle.mean(input)
115 116 117
        return mean


118
class CosSimLayer:
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    """
    Cos Similarly Calculate Layer
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, x, y):
        """
        operation
        """
        sim = paddle.nn.functional.cosine_similarity(x, y)
        return sim


137
class ElementwiseMaxLayer:
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    """
    Elementwise Max Layer class
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, x, y):
        """
        operation
        """
        max = paddle.maximum(x=x, y=y)
        return max


156
class ElementwiseAddLayer:
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    """
    Elementwise Add Layer class
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, x, y):
        """
        operation
        """
        add = paddle.add(x=x, y=y)
        return add


175
class ElementwiseSubLayer:
176 177 178 179 180 181 182 183 184 185 186 187 188 189
    """
    Elementwise Add Layer class
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, x, y):
        """
        operation
        """
190
        sub = paddle.subtract(x, y)
191 192 193
        return sub


194
class ConstantLayer:
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    """
    Generate A Constant Layer class
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, input, shape, dtype, value):
        """
        operation
        """
        shape = list(shape)
        input_shape = paddle.shape(input)
        shape[0] = input_shape[0]
212
        constant = paddle.tensor.fill_constant(shape, dtype, value)
213 214 215
        return constant


216
class SoftsignLayer:
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    """
    Softsign Layer class
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, input):
        """
        operation
        """
        softsign = paddle.nn.functional.softsign(input)
        return softsign


class FC(paddle.nn.Layer):
236
    r"""
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    This interface is used to construct a callable object of the ``FC`` class.
    For more details, refer to code examples.
    It creates a fully connected layer in the network. It can take
    one or multiple ``Tensor`` as its inputs. It creates a Variable called weights for each input tensor,
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [N, `size`],
    where N is batch size. If multiple input tensors are given, the results of
    multiple output tensors with shape [N, `size`] will be summed up. If ``bias_attr``
    is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.
    When the input is single ``Tensor`` :
    .. math::
        Out = Act({XW + b})
    When the input are multiple ``Tensor`` :
    .. math::
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
    In the above equation:
    * :math:`N`: Number of the input. N equals to len(input) if input is list of ``Tensor`` .
    * :math:`X_i`: The i-th input ``Tensor`` .
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
    * :math:`b`: The bias parameter created by this layer (if needed).
    * :math:`Act`: The activation function.
    * :math:`Out`: The output ``Tensor`` .
    See below for an example.
    .. code-block:: text
        Given:
            data_1.data = [[[0.1, 0.2]]]
            data_1.shape = (1, 1, 2) # 1 is batch_size
            data_2.data = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3) # 1 is batch_size
            fc = FC("fc", 2, num_flatten_dims=2)
            out = fc(input=[data_1, data_2])
        Then:
            out.data = [[[0.182996 -0.474117]]]
            out.shape = (1, 1, 2)
    Parameters:
274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        size(int): The number of output units in this layer.
        num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multi-dimension tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1
        param_attr (ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr (ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act (str, optional): Activation to be applied to the output of this layer. Default: None.
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default: False.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (list of Parameter): the learnable weights of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
298

299 300
    """

301 302 303 304 305 306 307 308 309 310
    def __init__(
        self,
        size,
        num_flatten_dims=1,
        param_attr=None,
        bias_attr=None,
        act=None,
        is_test=False,
        dtype="float32",
    ):
311
        super().__init__(dtype)
312 313 314 315 316 317 318

        self._size = size
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
319
        self.__w = []
320 321 322

    def _build_once(self, input):
        i = 0
323
        for inp, param in self._helper.iter_inputs_and_params(
324 325
            input, self._param_attr
        ):
326 327 328
            input_shape = inp.shape

            param_shape = [
329 330 331
                reduce(
                    lambda a, b: a * b, input_shape[self._num_flatten_dims :], 1
                )
332 333 334 335
            ] + [self._size]
            self.__w.append(
                self.add_parameter(
                    '_w%d' % i,
336 337 338 339 340 341 342 343
                    self.create_parameter(
                        attr=param,
                        shape=param_shape,
                        dtype=self._dtype,
                        is_bias=False,
                    ),
                )
            )
344 345
            i += 1

346
        size = [self._size]
347 348 349
        self._b = self.create_parameter(
            attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True
        )
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

    @property
    def weight(self):
        if len(self.__w) > 1:
            return self.__w
        else:
            return self.__w[0]

    @weight.setter
    def weight(self, value):
        if len(self.__w) == 1:
            self.__w[0] = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

    def forward(self, input):
372
        mul_results = []
373
        i = 0
374
        for inp, param in self._helper.iter_inputs_and_params(
375 376
            input, self._param_attr
        ):
377
            tmp = self._helper.create_variable_for_type_inference(self._dtype)
378 379 380 381 382 383 384 385 386
            self._helper.append_op(
                type="mul",
                inputs={"X": inp, "Y": self.__w[i]},
                outputs={"Out": tmp},
                attrs={
                    "x_num_col_dims": self._num_flatten_dims,
                    "y_num_col_dims": 1,
                },
            )
387 388 389 390 391 392 393
            i += 1
            mul_results.append(tmp)

        if len(mul_results) == 1:
            pre_bias = mul_results[0]
        else:
            pre_bias = self._helper.create_variable_for_type_inference(
394 395 396 397 398 399 400 401
                self._dtype
            )
            self._helper.append_op(
                type="sum",
                inputs={"X": mul_results},
                outputs={"Out": pre_bias},
                attrs={"use_mkldnn": False},
            )
402 403 404

        if self._b is not None:
            pre_activation = self._helper.create_variable_for_type_inference(
405 406 407 408 409 410 411 412
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims},
            )
413 414 415 416 417 418
        else:
            pre_activation = pre_bias
        # Currently, we don't support inplace in dygraph mode
        return self._helper.append_activation(pre_activation, act=self._act)


419
class HingeLoss:
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
    """
    Hing Loss Calculate class
    """

    def __init__(self, conf_dict):
        """
        initialize
        """
        self.margin = conf_dict["loss"]["margin"]

    def compute(self, pos, neg):
        """
        compute loss
        """
        elementwise_max = ElementwiseMaxLayer()
        elementwise_add = ElementwiseAddLayer()
        elementwise_sub = ElementwiseSubLayer()
        constant = ConstantLayer()
        reduce_mean = ReduceMeanLayer()
        loss = reduce_mean.ops(
            elementwise_max.ops(
                constant.ops(neg, neg.shape, "float32", 0.0),
                elementwise_add.ops(
                    elementwise_sub.ops(neg, pos),
444 445 446 447
                    constant.ops(neg, neg.shape, "float32", self.margin),
                ),
            )
        )
448 449 450 451 452 453 454 455 456 457 458 459
        return loss


class BOW(paddle.nn.Layer):
    """
    BOW
    """

    def __init__(self, conf_dict):
        """
        initialize
        """
460
        super().__init__()
461 462 463 464 465
        self.dict_size = conf_dict["dict_size"]
        self.task_mode = conf_dict["task_mode"]
        self.emb_dim = conf_dict["net"]["emb_dim"]
        self.bow_dim = conf_dict["net"]["bow_dim"]
        self.seq_len = conf_dict["seq_len"]
466 467 468 469 470 471
        self.emb_layer = EmbeddingLayer(
            self.dict_size, self.emb_dim, "emb"
        ).ops()
        self.bow_layer = paddle.nn.Linear(
            in_features=self.bow_dim, out_features=self.bow_dim
        )
472 473 474 475 476 477 478 479 480 481 482 483
        self.bow_layer_po = FCLayer(self.bow_dim, None, "fc").ops()
        self.softmax_layer = FCLayer(2, "softmax", "cos_sim").ops()

    @paddle.jit.to_static
    def forward(self, left, right):
        """
        Forward network
        """

        # embedding layer
        left_emb = self.emb_layer(left)
        right_emb = self.emb_layer(right)
484 485 486 487 488 489
        left_emb = paddle.reshape(
            left_emb, shape=[-1, self.seq_len, self.bow_dim]
        )
        right_emb = paddle.reshape(
            right_emb, shape=[-1, self.seq_len, self.bow_dim]
        )
490

491 492
        bow_left = paddle.sum(left_emb, axis=1)
        bow_right = paddle.sum(right_emb, axis=1)
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
        softsign_layer = SoftsignLayer()
        left_soft = softsign_layer.ops(bow_left)
        right_soft = softsign_layer.ops(bow_right)

        # matching layer
        if self.task_mode == "pairwise":
            left_bow = self.bow_layer(left_soft)
            right_bow = self.bow_layer(right_soft)
            cos_sim_layer = CosSimLayer()
            pred = cos_sim_layer.ops(left_bow, right_bow)
            return left_bow, pred
        else:
            concat_layer = ConcatLayer(1)
            concat = concat_layer.ops([left_soft, right_soft])
            concat_fc = self.bow_layer_po(concat)
            pred = self.softmax_layer(concat_fc)
            return left_soft, pred