simnet_dygraph_model.py 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from functools import reduce

H
HongyuJia 已提交
17
import paddle
18
import paddle.fluid.param_attr as attr
H
hjyp 已提交
19
from paddle.jit.api import to_static
20
from paddle.nn import Layer
21 22


23
class EmbeddingLayer:
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
    """
    Embedding Layer class
    """

    def __init__(self, dict_size, emb_dim, name="emb", padding_idx=None):
        """
        initialize
        """
        self.dict_size = dict_size
        self.emb_dim = emb_dim
        self.name = name
        self.padding_idx = padding_idx

    def ops(self):
        """
        operation
        """
        # TODO(huihuangzheng): The original code set the is_sparse=True, but it
        # causes crush in dy2stat. Set it to True after fixing it.
43 44 45 46
        emb = paddle.nn.Embedding(
            self.dict_size,
            self.emb_dim,
            sparse=True,
47
            padding_idx=self.padding_idx,
48
            weight_attr=attr.ParamAttr(
49 50
                name=self.name,
                initializer=paddle.nn.initializer.XavierUniform(),
51 52
            ),
        )
53 54 55 56

        return emb


57
class FCLayer:
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    """
    Fully Connect Layer class
    """

    def __init__(self, fc_dim, act, name="fc"):
        """
        initialize
        """
        self.fc_dim = fc_dim
        self.act = act
        self.name = name

    def ops(self):
        """
        operation
        """
74 75 76 77 78 79
        fc = FC(
            size=self.fc_dim,
            param_attr=attr.ParamAttr(name="%s.w" % self.name),
            bias_attr=attr.ParamAttr(name="%s.b" % self.name),
            act=self.act,
        )
80 81 82
        return fc


83
class ConcatLayer:
84 85 86 87 88 89 90 91 92 93 94 95 96 97
    """
    Connection Layer class
    """

    def __init__(self, axis):
        """
        initialize
        """
        self.axis = axis

    def ops(self, inputs):
        """
        operation
        """
98
        concat = paddle.concat(inputs, axis=self.axis)
99 100 101
        return concat


102
class ReduceMeanLayer:
103 104 105 106 107 108 109 110 111 112 113 114 115 116
    """
    Reduce Mean Layer class
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, input):
        """
        operation
        """
117
        mean = paddle.mean(input)
118 119 120
        return mean


121
class CosSimLayer:
122 123 124 125 126 127 128 129 130 131 132 133 134 135
    """
    Cos Similarly Calculate Layer
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, x, y):
        """
        operation
        """
C
ccrrong 已提交
136
        sim = paddle.nn.functional.cosine_similarity(x, y)
137 138 139
        return sim


140
class ElementwiseMaxLayer:
141 142 143 144 145 146 147 148 149 150 151 152 153 154
    """
    Elementwise Max Layer class
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, x, y):
        """
        operation
        """
H
HongyuJia 已提交
155
        max = paddle.maximum(x, y)
156 157 158
        return max


159
class ElementwiseAddLayer:
160 161 162 163 164 165 166 167 168 169 170 171 172 173
    """
    Elementwise Add Layer class
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, x, y):
        """
        operation
        """
174
        add = paddle.add(x, y)
175 176 177
        return add


178
class ElementwiseSubLayer:
179 180 181 182 183 184 185 186 187 188 189 190 191 192
    """
    Elementwise Add Layer class
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, x, y):
        """
        operation
        """
193
        sub = paddle.subtract(x, y)
194 195 196
        return sub


197
class ConstantLayer:
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    """
    Generate A Constant Layer class
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, input, shape, dtype, value):
        """
        operation
        """
        shape = list(shape)
2
201716010711 已提交
213
        input_shape = paddle.shape(input)
214
        shape[0] = input_shape[0]
215
        constant = paddle.tensor.fill_constant(shape, dtype, value)
216 217 218
        return constant


219
class SoftsignLayer:
220 221 222 223 224 225 226 227 228 229 230 231 232 233
    """
    Softsign Layer class
    """

    def __init__(self):
        """
        initialize
        """
        pass

    def ops(self, input):
        """
        operation
        """
234
        softsign = paddle.nn.functional.softsign(input)
235 236 237 238
        return softsign


class FC(Layer):
239
    r"""
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    This interface is used to construct a callable object of the ``FC`` class.
    For more details, refer to code examples.
    It creates a fully connected layer in the network. It can take
    one or multiple ``Tensor`` as its inputs. It creates a Variable called weights for each input tensor,
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [N, `size`],
    where N is batch size. If multiple input tensors are given, the results of
    multiple output tensors with shape [N, `size`] will be summed up. If ``bias_attr``
    is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.
    When the input is single ``Tensor`` :
    .. math::
        Out = Act({XW + b})
    When the input are multiple ``Tensor`` :
    .. math::
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
    In the above equation:
    * :math:`N`: Number of the input. N equals to len(input) if input is list of ``Tensor`` .
    * :math:`X_i`: The i-th input ``Tensor`` .
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
    * :math:`b`: The bias parameter created by this layer (if needed).
    * :math:`Act`: The activation function.
    * :math:`Out`: The output ``Tensor`` .
    See below for an example.
    .. code-block:: text
        Given:
            data_1.data = [[[0.1, 0.2]]]
            data_1.shape = (1, 1, 2) # 1 is batch_size
            data_2.data = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3) # 1 is batch_size
            fc = FC("fc", 2, num_flatten_dims=2)
            out = fc(input=[data_1, data_2])
        Then:
            out.data = [[[0.182996 -0.474117]]]
            out.shape = (1, 1, 2)
    Parameters:
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        size(int): The number of output units in this layer.
        num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multi-dimension tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1
        param_attr (ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr (ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act (str, optional): Activation to be applied to the output of this layer. Default: None.
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default: False.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (list of Parameter): the learnable weights of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
301

302 303 304 305 306 307 308 309 310 311 312 313 314
    Examples:
        .. code-block:: python
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import FC
          import numpy as np
          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              fc = FC("fc", 64, num_flatten_dims=2)
              data = to_variable(data)
              conv = fc(data)
    """

315 316 317 318 319 320 321 322 323 324
    def __init__(
        self,
        size,
        num_flatten_dims=1,
        param_attr=None,
        bias_attr=None,
        act=None,
        is_test=False,
        dtype="float32",
    ):
325
        super().__init__(dtype)
326 327 328 329 330 331 332

        self._size = size
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
333
        self.__w = []
334 335 336

    def _build_once(self, input):
        i = 0
337
        for inp, param in self._helper.iter_inputs_and_params(
338 339
            input, self._param_attr
        ):
340 341 342
            input_shape = inp.shape

            param_shape = [
343 344 345
                reduce(
                    lambda a, b: a * b, input_shape[self._num_flatten_dims :], 1
                )
346 347 348 349
            ] + [self._size]
            self.__w.append(
                self.add_parameter(
                    '_w%d' % i,
350 351 352 353 354 355 356 357
                    self.create_parameter(
                        attr=param,
                        shape=param_shape,
                        dtype=self._dtype,
                        is_bias=False,
                    ),
                )
            )
358 359
            i += 1

360
        size = [self._size]
361 362 363
        self._b = self.create_parameter(
            attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True
        )
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385

    @property
    def weight(self):
        if len(self.__w) > 1:
            return self.__w
        else:
            return self.__w[0]

    @weight.setter
    def weight(self, value):
        if len(self.__w) == 1:
            self.__w[0] = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

    def forward(self, input):
386
        mul_results = []
387
        i = 0
388
        for inp, param in self._helper.iter_inputs_and_params(
389 390
            input, self._param_attr
        ):
391
            tmp = self._helper.create_variable_for_type_inference(self._dtype)
392 393 394 395 396 397 398 399 400
            self._helper.append_op(
                type="mul",
                inputs={"X": inp, "Y": self.__w[i]},
                outputs={"Out": tmp},
                attrs={
                    "x_num_col_dims": self._num_flatten_dims,
                    "y_num_col_dims": 1,
                },
            )
401 402 403 404 405 406 407
            i += 1
            mul_results.append(tmp)

        if len(mul_results) == 1:
            pre_bias = mul_results[0]
        else:
            pre_bias = self._helper.create_variable_for_type_inference(
408 409 410 411 412 413 414 415
                self._dtype
            )
            self._helper.append_op(
                type="sum",
                inputs={"X": mul_results},
                outputs={"Out": pre_bias},
                attrs={"use_mkldnn": False},
            )
416 417 418

        if self._b is not None:
            pre_activation = self._helper.create_variable_for_type_inference(
419 420 421 422 423 424 425 426
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims},
            )
427 428 429 430 431 432
        else:
            pre_activation = pre_bias
        # Currently, we don't support inplace in dygraph mode
        return self._helper.append_activation(pre_activation, act=self._act)


433
class HingeLoss:
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    """
    Hing Loss Calculate class
    """

    def __init__(self, conf_dict):
        """
        initialize
        """
        self.margin = conf_dict["loss"]["margin"]

    def compute(self, pos, neg):
        """
        compute loss
        """
        elementwise_max = ElementwiseMaxLayer()
        elementwise_add = ElementwiseAddLayer()
        elementwise_sub = ElementwiseSubLayer()
        constant = ConstantLayer()
        reduce_mean = ReduceMeanLayer()
        loss = reduce_mean.ops(
            elementwise_max.ops(
                constant.ops(neg, neg.shape, "float32", 0.0),
                elementwise_add.ops(
                    elementwise_sub.ops(neg, pos),
458 459 460 461
                    constant.ops(neg, neg.shape, "float32", self.margin),
                ),
            )
        )
462 463 464 465 466 467 468 469 470 471 472 473
        return loss


class BOW(Layer):
    """
    BOW
    """

    def __init__(self, conf_dict):
        """
        initialize
        """
474
        super().__init__()
475 476 477 478 479
        self.dict_size = conf_dict["dict_size"]
        self.task_mode = conf_dict["task_mode"]
        self.emb_dim = conf_dict["net"]["emb_dim"]
        self.bow_dim = conf_dict["net"]["bow_dim"]
        self.seq_len = conf_dict["seq_len"]
480 481 482
        self.emb_layer = EmbeddingLayer(
            self.dict_size, self.emb_dim, "emb"
        ).ops()
483
        self.bow_layer = paddle.nn.Linear(self.bow_dim, self.bow_dim)
484 485 486
        self.bow_layer_po = FCLayer(self.bow_dim, None, "fc").ops()
        self.softmax_layer = FCLayer(2, "softmax", "cos_sim").ops()

H
hjyp 已提交
487
    @to_static
488 489 490 491 492 493 494 495
    def forward(self, left, right):
        """
        Forward network
        """

        # embedding layer
        left_emb = self.emb_layer(left)
        right_emb = self.emb_layer(right)
496
        left_emb = paddle.reshape(
497 498
            left_emb, shape=[-1, self.seq_len, self.bow_dim]
        )
499
        right_emb = paddle.reshape(
500 501
            right_emb, shape=[-1, self.seq_len, self.bow_dim]
        )
502

503 504
        bow_left = paddle.sum(left_emb, axis=1)
        bow_right = paddle.sum(right_emb, axis=1)
505 506 507 508 509
        softsign_layer = SoftsignLayer()
        left_soft = softsign_layer.ops(bow_left)
        right_soft = softsign_layer.ops(bow_right)

        # matching layer
510 511 512 513 514 515 516 517 518 519 520 521
        if self.task_mode == "pairwise":
            left_bow = self.bow_layer(left_soft)
            right_bow = self.bow_layer(right_soft)
            cos_sim_layer = CosSimLayer()
            pred = cos_sim_layer.ops(left_bow, right_bow)
            return left_bow, pred
        else:
            concat_layer = ConcatLayer(1)
            concat = concat_layer.ops([left_soft, right_soft])
            concat_fc = self.bow_layer_po(concat)
            pred = self.softmax_layer(concat_fc)
            return left_soft, pred