conv_grad_kernel.cc 4.8 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/conv_grad_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
19
#include "paddle/phi/kernels/impl/conv_grad_kernel_impl.h"
H
hong 已提交
20 21 22 23 24 25 26

namespace phi {

template <typename T, typename Context>
void DepthwiseConvGradKernel(const Context& dev_ctx,
                             const DenseTensor& input,
                             const DenseTensor& filter,
H
hong 已提交
27
                             const DenseTensor& out_grad,
H
hong 已提交
28 29
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
30
                             const std::string& padding_algorithm,
H
hong 已提交
31 32 33 34 35 36 37 38
                             int groups,
                             const std::vector<int>& dilations,
                             const std::string& data_format,
                             DenseTensor* input_grad,
                             DenseTensor* filter_grad) {
  ConvGradKernel<T>(dev_ctx,
                    input,
                    filter,
H
hong 已提交
39
                    out_grad,
H
hong 已提交
40 41
                    strides,
                    paddings,
42
                    padding_algorithm,
H
hong 已提交
43
                    dilations,
44
                    groups,
H
hong 已提交
45 46 47 48 49 50 51 52 53
                    data_format,
                    input_grad,
                    filter_grad);
}

template <typename T, typename Context>
void Conv3DGradKernel(const Context& dev_ctx,
                      const DenseTensor& input,
                      const DenseTensor& filter,
H
hong 已提交
54
                      const DenseTensor& out_grad,
H
hong 已提交
55 56
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
57
                      const std::string& padding_algorithm,
H
hong 已提交
58 59 60 61 62 63 64 65
                      int groups,
                      const std::vector<int>& dilations,
                      const std::string& data_format,
                      DenseTensor* input_grad,
                      DenseTensor* filter_grad) {
  ConvGradKernel<T>(dev_ctx,
                    input,
                    filter,
H
hong 已提交
66
                    out_grad,
H
hong 已提交
67 68
                    strides,
                    paddings,
69
                    padding_algorithm,
H
hong 已提交
70
                    dilations,
71
                    groups,
H
hong 已提交
72 73 74 75 76
                    data_format,
                    input_grad,
                    filter_grad);
}

77
template <typename T, typename Context>
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
void Conv3DDoubleGradKernel(
    const Context& ctx,
    const DenseTensor& input,
    const DenseTensor& filter,
    const DenseTensor& out_grad,
    const paddle::optional<DenseTensor>& input_grad_grad,
    const paddle::optional<DenseTensor>& filter_grad_grad,
    const std::vector<int>& strides,
    const std::vector<int>& paddings_t,
    const std::string& padding_algorithm,
    int groups,
    const std::vector<int>& dilations_t,
    const std::string& data_format,
    DenseTensor* input_grad,
    DenseTensor* filter_grad,
    DenseTensor* out_grad_grad) {
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  ConvGradGradKernel<T>(ctx,
                        input,
                        filter,
                        out_grad,
                        input_grad_grad,
                        filter_grad_grad,
                        strides,
                        paddings_t,
                        padding_algorithm,
                        dilations_t,
                        groups,
                        data_format,
                        input_grad,
                        filter_grad,
                        out_grad_grad);
}

H
hong 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124
}  // namespace phi

PD_REGISTER_KERNEL(
    conv2d_grad, CPU, ALL_LAYOUT, phi::ConvGradKernel, float, double) {}

PD_REGISTER_KERNEL(depthwise_conv2d_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::DepthwiseConvGradKernel,
                   float,
                   double) {}

PD_REGISTER_KERNEL(
    conv3d_grad, CPU, ALL_LAYOUT, phi::Conv3DGradKernel, float, double) {}
125

126 127 128 129 130 131
PD_REGISTER_KERNEL(conv2d_double_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ConvGradGradKernel,
                   float,
                   double) {}
132

133
PD_REGISTER_KERNEL(conv3d_double_grad,
134 135
                   CPU,
                   ALL_LAYOUT,
136
                   phi::Conv3DDoubleGradKernel,
137 138
                   float,
                   double) {}