cxx_api_test.cc 4.4 KB
Newer Older
S
superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/api/cxx_api.h"
16
#include <gflags/gflags.h>
S
superjomn 已提交
17
#include <gtest/gtest.h>
S
superjomn 已提交
18
#include <vector>
19
#include "paddle/fluid/lite/core/mir/passes.h"
S
superjomn 已提交
20 21
#include "paddle/fluid/lite/core/op_registry.h"

22
DEFINE_string(model_dir, "", "");
S
superjomn 已提交
23
DEFINE_string(optimized_model, "", "");
24

Y
Yan Chunwei 已提交
25 26 27 28
// For training.
DEFINE_string(startup_program_path, "", "");
DEFINE_string(main_program_path, "", "");

S
superjomn 已提交
29 30 31
namespace paddle {
namespace lite {

S
superjomn 已提交
32
TEST(CXXApi, test) {
Y
Yan Chunwei 已提交
33
  lite::ExecutorLite predictor;
S
superjomn 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46
#ifndef LITE_WITH_CUDA
  std::vector<Place> valid_places({Place{TARGET(kHost), PRECISION(kFloat)}});
#else
  std::vector<Place> valid_places({
      Place{TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW)},
      Place{TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kNCHW)},
      Place{TARGET(kCUDA), PRECISION(kAny), DATALAYOUT(kNCHW)},
      Place{TARGET(kHost), PRECISION(kAny), DATALAYOUT(kNCHW)},
      Place{TARGET(kCUDA), PRECISION(kAny), DATALAYOUT(kAny)},
      Place{TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny)},
  });
#endif

47 48
  predictor.Build(FLAGS_model_dir, Place{TARGET(kCUDA), PRECISION(kFloat)},
                  valid_places);
49 50

  auto* input_tensor = predictor.GetInput(0);
51 52
  input_tensor->Resize(DDim(std::vector<DDim::value_type>({100, 100})));
  auto* data = input_tensor->mutable_data<float>();
53 54 55 56
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

S
superjomn 已提交
57
  // LOG(INFO) << "input " << *input_tensor;
58

59
  predictor.Run();
60 61

  auto* out = predictor.GetOutput(0);
62
  LOG(INFO) << out << " memory size " << out->data_size();
63 64 65
  LOG(INFO) << "out " << out->data<float>()[0];
  LOG(INFO) << "out " << out->data<float>()[1];
  LOG(INFO) << "dims " << out->dims();
S
superjomn 已提交
66
  // LOG(INFO) << "out " << *out;
S
superjomn 已提交
67 68
}

69
#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
S
Superjomn 已提交
70
TEST(CXXApi, save_model) {
Y
Yan Chunwei 已提交
71
  lite::ExecutorLite predictor;
S
Superjomn 已提交
72
  std::vector<Place> valid_places({Place{TARGET(kHost), PRECISION(kFloat)}});
73 74
  predictor.Build(FLAGS_model_dir, Place{TARGET(kCUDA), PRECISION(kFloat)},
                  valid_places);
S
Superjomn 已提交
75

S
superjomn 已提交
76
  predictor.SaveModel(FLAGS_optimized_model);
S
Superjomn 已提交
77
}
Y
Yan Chunwei 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
#endif  // LITE_WITH_LIGHT_WEIGHT_FRAMEWORK

#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
TEST(CXXTrainer, train) {
  Place prefer_place({TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW)});
  std::vector<Place> valid_places({prefer_place});
  auto scope = std::make_shared<lite::Scope>();

  CXXTrainer trainer(scope, prefer_place, valid_places);

  std::string main_program_pb, startup_program_pb;
  ReadBinaryFile(FLAGS_main_program_path, &main_program_pb);
  ReadBinaryFile(FLAGS_startup_program_path, &startup_program_pb);
  framework::proto::ProgramDesc main_program_desc, startup_program_desc;
  main_program_desc.ParseFromString(main_program_pb);
  startup_program_desc.ParseFromString(startup_program_pb);

  LOG(INFO) << main_program_desc.DebugString();

  for (const auto& op : main_program_desc.blocks(0).ops()) {
    LOG(INFO) << "get op " << op.type();
  }

  return;

  trainer.RunStartupProgram(startup_program_desc);
  auto& exe = trainer.BuildMainProgramExecutor(main_program_desc);
  auto* tensor0 = exe.GetInput(0);
  tensor0->Resize(std::vector<int64_t>({100, 100}));
  auto* data0 = tensor0->mutable_data<float>();
  data0[0] = 0;

  exe.Run();
}
#endif  // LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
S
Superjomn 已提交
113

S
superjomn 已提交
114 115 116 117 118 119
}  // namespace lite
}  // namespace paddle

USE_LITE_OP(mul);
USE_LITE_OP(fc);
USE_LITE_OP(scale);
120 121
USE_LITE_OP(feed);
USE_LITE_OP(fetch);
S
superjomn 已提交
122 123 124 125 126 127 128 129 130 131 132 133
USE_LITE_OP(io_copy);
USE_LITE_KERNEL(fc, kHost, kFloat, kNCHW, def);
USE_LITE_KERNEL(mul, kHost, kFloat, kNCHW, def);
USE_LITE_KERNEL(scale, kHost, kFloat, kNCHW, def);
USE_LITE_KERNEL(feed, kHost, kAny, kAny, def);
USE_LITE_KERNEL(fetch, kHost, kAny, kAny, def);

#ifdef LITE_WITH_CUDA
USE_LITE_KERNEL(mul, kCUDA, kFloat, kNCHW, def);
USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, host_to_device);
USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, device_to_host);
#endif