squared_l2_distance_op.h 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
25
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
26 27 28 29 30

template <typename Place, typename T>
class SquaredL2DistanceKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    auto* in0 = context.Input<Tensor>("X");
    auto* in1 = context.Input<Tensor>("Y");
    auto* out0 = context.Output<Tensor>("sub_result");
    auto* out1 = context.Output<Tensor>("Out");

    auto in0_dims = in0->dims();
    auto in1_dims = in1->dims();

    int cols = framework::product(in0_dims) / in0_dims[0];
    // reduce dimensions except the first
    auto x =
        EigenMatrix<T>::From(*in0, framework::make_ddim({in0_dims[0], cols}));
    auto y =
        EigenMatrix<T>::From(*in1, framework::make_ddim({in1_dims[0], cols}));

    out0->mutable_data<T>(context.GetPlace());
    out1->mutable_data<T>(context.GetPlace());
    auto sub_result = EigenMatrix<T>::From(*out0);
    auto z = EigenMatrix<T>::From(*out1);
50

51
    auto place = context.GetEigenDevice<Place>();
52 53
    auto x_dims = x.dimensions();
    auto y_dims = y.dimensions();
54
    // buffer the substraction result
55 56 57 58
    if (y_dims[0] == 1 && x_dims[0] > y_dims[0]) {
      auto y_broadcast_dims = y_dims;
      y_broadcast_dims[0] = x_dims[0];
      sub_result.device(place) = x - y.broadcast(y_broadcast_dims);
59
    } else {
60
      sub_result.device(place) = x - y;
61 62
    }

63
    z.device(place) = sub_result.pow(2).sum(Eigen::array<int, 1>({1}));
64 65 66 67 68 69 70
  }
};

template <typename Place, typename T>
class SquaredL2DistanceGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
71 72 73 74
    auto* in0 = context.Input<Tensor>("sub_result");
    auto* in1 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* x_g = context.Output<Tensor>(framework::GradVarName("X"));
    auto* y_g = context.Output<Tensor>(framework::GradVarName("Y"));
75

76 77
    auto sub_result = EigenMatrix<T>::From(*in0);
    auto out_grad = EigenMatrix<T>::From(*in1);
78

79 80
    auto x_dims = x_g->dims();
    auto y_dims = y_g->dims();
81

82
    int cols = framework::product(x_dims) / x_dims[0];
83
    // calculate gradient
84 85
    auto grad_mat =
        2 * (out_grad.broadcast(Eigen::array<int, 2>({1, cols}))) * sub_result;
86 87

    // propagate back to input
88 89 90 91 92 93
    auto eigen_place = context.GetEigenDevice<Place>();
    if (x_g != nullptr) {
      x_g->mutable_data<T>(context.GetPlace());
      // eigen matrix
      auto x_grad =
          EigenMatrix<T>::From(*x_g, framework::make_ddim({x_dims[0], cols}));
94
      // dimensions are same with subResult
95
      x_grad.device(eigen_place) = grad_mat;
96
    }
97 98 99 100 101 102 103

    if (y_g != nullptr) {
      y_g->mutable_data<T>(context.GetPlace());
      auto y_grad =
          EigenMatrix<T>::From(*y_g, framework::make_ddim({y_dims[0], cols}));

      PADDLE_ENFORCE(sub_result.dimensions()[0] >= y_dims[0],
104 105 106
                     "First dimension of gradient must be greater or "
                     "equal than first dimension of target");

107 108
      if (sub_result.dimensions()[0] == y_dims[0]) {
        y_grad.device(eigen_place) = -1 * grad_mat;
109
      } else {
110 111
        y_grad.device(eigen_place) =
            -1 * (grad_mat.sum(Eigen::array<int, 2>({0})));
112 113
      }
    }
114 115 116 117 118
  }
};

}  // namespace operators
}  // namespace paddle