eager_op_test.py 136.3 KB
Newer Older
姜永久 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#   Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
import os
import random
import struct
import sys
import unittest
import warnings
from collections import defaultdict
from copy import copy

import numpy as np
L
LoneRanger 已提交
26
from op import Operator
K
Kim Yann 已提交
27 28
from prim_op_test import OpTestUtils, PrimForwardChecker, PrimGradChecker
from testsuite import append_input_output, append_loss_ops, create_op, set_input
T
tianshuo78520a 已提交
29 30

sys.path.append("..")
K
Kim Yann 已提交
31 32 33
from white_list import (
    check_shape_white_list,
    compile_vs_runtime_white_list,
34
    new_ir_python_api_grad_white_list,
K
Kim Yann 已提交
35 36 37 38 39
    no_check_set_white_list,
    no_grad_set_white_list,
    op_accuracy_white_list,
    op_threshold_white_list,
)
姜永久 已提交
40 41

import paddle
42
from paddle import base
43
from paddle.autograd.ir_backward import grad as ir_grad
44 45 46 47
from paddle.base import core, unique_name
from paddle.base.backward import append_backward
from paddle.base.executor import Executor
from paddle.base.framework import (
姜永久 已提交
48 49 50
    OpProtoHolder,
    Program,
    _current_expected_place,
51
    canonicalize_attrs,
52
    get_flags,
53
    set_flags,
姜永久 已提交
54
)
55
from paddle.base.wrapped_decorator import signature_safe_contextmanager
姜永久 已提交
56 57

sys.path.append(os.path.abspath(os.path.dirname(__file__)))
W
wanghuancoder 已提交
58 59 60 61 62 63 64 65 66 67


@signature_safe_contextmanager
def paddle_static_guard():
    try:
        paddle.enable_static()
        yield
    finally:
        paddle.disable_static()

姜永久 已提交
68 69 70 71 72 73 74 75

def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
C
co63oc 已提交
76
        expect_dtypes(list[str]): expected dtype of output tensor.
姜永久 已提交
77 78 79 80
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
81
        check_out_dtype(base.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)
姜永久 已提交
82 83

    """
W
wanghuancoder 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    with paddle_static_guard():
        for i, expect_dtype in enumerate(expect_dtypes):
            with paddle.static.program_guard(paddle.static.Program()):
                input_t = []
                for index, spec in enumerate(in_specs):
                    if len(spec) == 1:
                        shape = spec[0]
                        dtype = (
                            expect_dtype if target_index == index else 'float32'
                        )
                    elif len(spec) == 2:
                        shape, dtype = spec
                    else:
                        raise ValueError(
                            "Value of in_specs[{}] should contains two elements: [shape, dtype]".format(
                                index
                            )
                        )
                    input_t.append(
                        paddle.static.data(
                            name='data_%s' % index, shape=shape, dtype=dtype
姜永久 已提交
105 106 107
                        )
                    )

W
wanghuancoder 已提交
108
                out = api_fn(*input_t, **configs)
109
                out_dtype = base.data_feeder.convert_dtype(out.dtype)
姜永久 已提交
110

W
wanghuancoder 已提交
111 112 113 114 115
                if out_dtype != expect_dtype:
                    raise ValueError(
                        "Expected out.dtype is {}, but got {} from {}.".format(
                            expect_dtype, out_dtype, api_fn.__name__
                        )
姜永久 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
                    )


def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(0.1, 1.0, size=(batch_size, class_num)).astype(
        dtype
    )
    prob_sum = prob.sum(axis=1)
    for i in range(len(prob)):
        prob[i] /= prob_sum[i]
    return prob


def get_numeric_gradient(
    place,
    scope,
    op,
    inputs,
    input_to_check,
    output_names,
    delta=0.005,
    in_place=False,
):
    # FIXME: change this method by compile time concepts
    set_input(scope, op, inputs, place)

    def product(dim):
        return functools.reduce(lambda a, b: a * b, dim, 1)

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
        tensor_to_check_dtype = np.float32
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
        tensor_to_check_dtype = np.float64
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_to_check_dtype = np.complex128
    else:
        raise ValueError(
            "Not supported data type "
            + str(tensor_to_check_dtype)
            + ", tensor name : "
            + str(input_to_check)
        )

    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

    gradient_flat = np.zeros(shape=(tensor_size,), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
            return struct.unpack(
                '<f',
                struct.pack('<I', np.uint32(numpy_tensor[i]) << np.uint32(16)),
            )[0]
        elif tensor_to_check_dtype == np.float32:
            return tensor._get_float_element(i)
        elif tensor_to_check_dtype == np.float64:
            return tensor._get_double_element(i)
209 210 211 212
        elif tensor_to_check_dtype == np.complex64:
            return tensor._get_complex64_element(i)
        elif tensor_to_check_dtype == np.complex128:
            return tensor._get_complex128_element(i)
姜永久 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        else:
            raise TypeError(
                "Unsupported test data type %s." % tensor_to_check_dtype
            )

    def __set_elem__(tensor, i, e):
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
        elif tensor_to_check_dtype == np.float32:
            tensor._set_float_element(i, e)
        elif tensor_to_check_dtype == np.float64:
            tensor._set_double_element(i, e)
237 238 239 240
        elif tensor_to_check_dtype == np.complex64:
            return tensor._set_complex64_element(i, e)
        elif tensor_to_check_dtype == np.complex128:
            return tensor._set_complex128_element(i, e)
姜永久 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        else:
            raise TypeError(
                "Unsupported test data type %s." % tensor_to_check_dtype
            )

    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
    for i in range(tensor_size):
        if in_place:
            set_input(scope, op, inputs, place)

        # get one input element throw it's index i.
        origin = __get_elem__(tensor_to_check, i)
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
        __set_elem__(tensor_to_check, i, x_pos)
        y_pos = get_output()

259 260 261 262 263 264 265
        if tensor_to_check_dtype in [np.complex64, np.complex128]:
            if in_place:
                set_input(scope, op, inputs, place)
            x_pos_j = origin + 1j * delta
            __set_elem__(tensor_to_check, i, x_pos_j)
            y_pos_j = get_output()

姜永久 已提交
266 267 268 269 270 271 272
        if in_place:
            set_input(scope, op, inputs, place)

        x_neg = origin - delta
        __set_elem__(tensor_to_check, i, x_neg)
        y_neg = get_output()

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        if tensor_to_check_dtype in [np.complex64, np.complex128]:
            if in_place:
                set_input(scope, op, inputs, place)

            x_neg_j = origin - 1j * delta
            __set_elem__(tensor_to_check, i, x_neg_j)
            y_neg_j = get_output()

        __set_elem__(tensor_to_check, i, origin)

        if tensor_to_check_dtype in [np.complex64, np.complex128]:
            # always assume real output, because this function has
            # no input for dl/di, though it should do. so there di will be zero

            # TODO: Here is a trick to be consistent with the existing OpTest, it
            # need to support variable gradients input
            f_ajoint = np.array(1 + 0j)
            df_over_dr = (y_pos - y_neg) / delta / 2
            df_over_di = (y_pos_j - y_neg_j) / delta / 2

            dl_over_du, dl_over_dv = f_ajoint.real, f_ajoint.imag

            du_over_dr, dv_over_dr = df_over_dr.real, df_over_dr.imag

            du_over_di, dv_over_di = df_over_di.real, df_over_di.imag

            dl_over_dr = np.sum(
                dl_over_du * du_over_dr + dl_over_dv * dv_over_dr
            )
            dl_over_di = np.sum(
                dl_over_du * du_over_di + dl_over_dv * dv_over_di
            )
            gradient_flat[i] = dl_over_dr + 1j * dl_over_di
        else:
            df_over_dr = y_pos - y_neg
            gradient_flat[i] = df_over_dr / delta / 2

姜永久 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
        __set_elem__(tensor_to_check, i, origin)

    return gradient_flat.reshape(tensor_to_check.shape())


def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.

    Check_grad is required for Op test cases. However, there are some special
    cases that do not need to do check_grad. This decorator is used to skip the
    check_grad of the above cases.

    Note: the execution of unit test will not be skipped. It just avoids check_grad
    checking in tearDownClass method by setting a `no_need_check_grad` flag.

    Example:
        @skip_check_grad_ci(reason="For inference, check_grad is not required.")
        class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


def skip_check_inplace_ci(reason=None):
    if not isinstance(reason, str):
        raise AssertionError(
            "The reason for skipping check_inplace is required."
        )

    def wrapper(cls):
        cls.no_need_check_inplace = True
        return cls

    return wrapper


def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)

    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output


def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
        lambda x: struct.unpack(
            '<f', struct.pack('<I', np.uint32(x) << np.uint32(16))
        )[0],
        otypes=[np.float32],
    )(in_list.flat)
    return np.reshape(out, in_list.shape)


class OpTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
        cls.call_once = False
        cls.dtype = None
        cls.outputs = {}
        cls.input_shape_is_large = True
391
        cls.is_calc_ref = False
392
        cls.check_prim = False
393
        cls._check_cinn = False
姜永久 已提交
394 395 396 397

        np.random.seed(123)
        random.seed(124)

K
Kim Yann 已提交
398
        cls._use_system_allocator = _set_use_system_allocator(True)
姜永久 已提交
399 400 401 402 403 404 405 406 407

    @classmethod
    def tearDownClass(cls):
        """Restore random seeds"""
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

        _set_use_system_allocator(cls._use_system_allocator)

C
Charles-hit 已提交
408 409 410
        if hasattr(cls, 'check_prim') and os.getenv('FLAGS_prim_test_log'):
            print("check prim end!")

姜永久 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
                if is_mkldnn_op_test():
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu

        def is_mkldnn_op_test():
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn

        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

        def is_custom_device_op_test():
            return hasattr(cls, "use_custom_device") and cls.use_custom_device

436 437 438 439 440 441 442
        def is_complex_test():
            return (
                hasattr(cls, "test_complex")
                and cls.test_complex
                or (cls.dtype in [np.complex64, np.complex128])
            )

姜永久 已提交
443 444 445 446 447 448 449
        if not hasattr(cls, "op_type"):
            raise AssertionError(
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually."
            )

        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
450 451 452 453
        if (
            not hasattr(cls, "no_need_check_grad")
            and not is_empty_grad_op(cls.op_type)
            and not is_complex_test()
姜永久 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
        ):
            if cls.dtype is None or (
                cls.dtype == np.float16
                and cls.op_type
                not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST
                and not hasattr(cls, "exist_check_grad")
            ):
                raise AssertionError(
                    "This test of %s op needs check_grad." % cls.op_type
                )

            # check for op test with fp64 precision, but not check mkldnn op test for now
            if (
                cls.dtype in [np.float32, np.float64]
                and cls.op_type
                not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST
                and not hasattr(cls, 'exist_fp64_check_grad')
                and not is_xpu_op_test()
                and not is_mkldnn_op_test()
                and not is_rocm_op_test()
                and not is_custom_device_op_test()
475
                and not cls.check_prim
姜永久 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
            ):
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision."
                    % cls.op_type
                )

            if (
                not cls.input_shape_is_large
                and cls.op_type
                not in check_shape_white_list.NEED_TO_FIX_OP_LIST
            ):
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for "
                    + cls.op_type
                    + " Op."
                )

    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

    def is_bfloat16_op(self):
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
        return (
            self.dtype == np.uint16
            or (
                hasattr(self, 'output_dtype') and self.output_dtype == np.uint16
            )
            or (
                hasattr(self, 'mkldnn_data_type')
508
                and self.mkldnn_data_type == "bfloat16"
姜永久 已提交
509 510 511 512 513 514 515 516
            )
            or (
                hasattr(self, 'attrs')
                and 'mkldnn_data_type' in self.attrs
                and self.attrs['mkldnn_data_type'] == 'bfloat16'
            )
        )

517 518 519 520 521
    def is_float16_op(self):
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
        return (
            self.dtype == np.float16
522
            or self.dtype == "float16"
523 524 525 526 527 528
            or (
                hasattr(self, 'output_dtype')
                and self.output_dtype == np.float16
            )
            or (
                hasattr(self, 'mkldnn_data_type')
529
                and self.mkldnn_data_type == "float16"
530 531 532 533 534 535 536 537
            )
            or (
                hasattr(self, 'attrs')
                and 'mkldnn_data_type' in self.attrs
                and self.attrs['mkldnn_data_type'] == 'float16'
            )
        )

姜永久 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551
    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn) or (
            hasattr(self, "attrs")
            and "use_mkldnn" in self.attrs
            and self.attrs["use_mkldnn"]
        )

    def is_xpu_op(self):
        return (hasattr(self, "use_xpu") and self.use_xpu) or (
            hasattr(self, "attrs")
            and "use_xpu" in self.attrs
            and self.attrs["use_xpu"]
        )

552 553 554 555 556 557
    def is_fp16_compared_with_fp32(self):
        return self.is_float16_op() and (
            self.op_type
            not in op_accuracy_white_list.NO_FP16_COMPARED_WITH_FP32_OP_LIST
        )

558 559 560 561 562 563 564 565 566 567 568 569
    def is_bf16_compared_with_fp32(self):
        return self.is_bfloat16_op() and (
            self.op_type
            not in op_accuracy_white_list.NO_BF16_COMPARED_WITH_FP32_OP_LIST
        )

    def is_compared_with_fp32(self):
        return (
            self.is_fp16_compared_with_fp32()
            or self.is_bf16_compared_with_fp32()
        )

570
    def enable_cal_ref_output(self):
571
        self.is_calc_ref = True
572 573 574 575

    def disable_cal_ref_output(self):
        self.is_calc_ref = False

576 577 578
    def _enable_check_cinn_test(self, place, inputs, outputs):
        # if the test not run in cuda or the paddle not compile with CINN, skip cinn test
        if (
579 580
            not core.is_compiled_with_cinn()
            or not core.is_compiled_with_cuda()
581
            or not isinstance(place, base.CUDAPlace)
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
        ):
            return False
        # CINN not support bfloat16 now, skip cinn test
        if self.is_bfloat16_op():
            return False
        # CINN not support 0D-tensor now, skip cinn test
        for var in inputs.values():
            if len(var.shape()) == 0:
                return False
        for var in outputs.values():
            if len(var.shape) == 0:
                return False
        # CINN not support dynamic shape now, skip cinn test
        # TODO(thisjiang): cannot check dynamic shape op automatic, should do manually now
        return True

姜永久 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    # set the self.output_dtype .
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
            assert isinstance(
                numpy_dict, dict
            ), "self.inputs, self.outputs must be numpy_dict"
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in numpy_dict.items():
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                            sub_val_value[1]
                        ):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif (
                            len(sub_val_value) > 1
                            and isinstance(sub_val_value[1], (list, tuple))
                            and is_np_data(sub_val_value[1][0])
                        ):  # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
        dtype_list = [
            np.dtype(np.float64),
            np.dtype(np.float32),
            np.dtype(np.float16),
            np.dtype(np.int64),
            np.dtype(np.int32),
            np.dtype(np.uint16),
            np.dtype(np.int16),
            np.dtype(np.int8),
            np.dtype(np.uint8),
            np.dtype(np.bool_),
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
            if dtype in input_dtype_set:
                self.dtype = dtype
                break
        # save input dtype in class attr
        self.__class__.dtype = self.dtype

        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
                    if isinstance(np_value, tuple):
                        tensor.set(np_value[0], place)
671
                        dtype = np.array(np_value[1]).dtype
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

                        if self.is_calc_ref:
                            # convert the float16 to float by numpy.astype
                            if dtype == np.float16:
                                if isinstance(np_value[1], list):
                                    tensor.set_recursive_sequence_lengths(
                                        np.array(np_value[1]).astype(np.float32)
                                    )
                                else:
                                    tensor.set_recursive_sequence_lengths(
                                        np_value[1].astype(np.float32)
                                    )
                            # convert the bfloat16 to float by convert_uint16_to_float
                            # provided in this file
                            elif dtype == np.uint16:
                                if isinstance(np_value[1], list):
                                    tensor.set_recursive_sequence_lengths(
                                        convert_uint16_to_float(
                                            np.array(np_value[1])
                                        )
                                    )
                                else:
                                    tensor.set_recursive_sequence_lengths(
                                        convert_uint16_to_float(np_value[1])
                                    )
697 698
                            else:
                                tensor.set_recursive_sequence_lengths(
699
                                    np_value[1]
700 701 702
                                )
                        else:
                            tensor.set_recursive_sequence_lengths(np_value[1])
姜永久 已提交
703
                    else:
704 705 706 707 708 709 710 711 712
                        if self.is_calc_ref:
                            if np_value.dtype == np.float16:
                                tensor.set(np_value.astype(np.float32), place)
                            elif np_value.dtype == np.uint16:
                                tensor.set(
                                    convert_uint16_to_float(np_value), place
                                )
                            else:
                                tensor.set(np_value, place)
713 714
                        else:
                            tensor.set(np_value, place)
姜永久 已提交
715 716 717 718 719
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
                    tensor.set(self.inputs[var_name][0], place)
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
                    if self.is_calc_ref:
                        if isinstance(self.inputs[var_name][1], list):
                            dtype = np.array(self.inputs[var_name][1]).dtype
                            if dtype == np.float16:
                                tensor.set_recursive_sequence_lengths(
                                    np.array(self.inputs[var_name][1]).astype(
                                        np.float32
                                    )
                                )
                            elif dtype == np.uint16:
                                tensor.set_recursive_sequence_lengths(
                                    convert_uint16_to_float(
                                        np.array(self.inputs[var_name][1])
                                    )
                                )
                            else:
                                tensor.set_recursive_sequence_lengths(
                                    self.inputs[var_name][1]
                                )

                        elif self.inputs[var_name][1].dtype == np.float16:
                            tensor.set_recursive_sequence_lengths(
                                self.inputs[var_name][1].astype(np.float32)
                            )
                        elif self.inputs[var_name][1].dtype == np.uint16:
                            tensor.set_recursive_sequence_lengths(
                                convert_uint16_to_float(
                                    self.inputs[var_name][1]
                                )
                            )
                        else:
                            tensor.set_recursive_sequence_lengths(
                                self.inputs[var_name][1]
                            )
754 755 756 757
                    else:
                        tensor.set_recursive_sequence_lengths(
                            self.inputs[var_name][1]
                        )
姜永久 已提交
758
                else:
759 760 761 762 763 764 765 766 767 768 769 770
                    if self.is_calc_ref:
                        if self.inputs[var_name].dtype == np.float16:
                            tensor.set(
                                self.inputs[var_name].astype(np.float32), place
                            )
                        elif self.inputs[var_name].dtype == np.uint16:
                            tensor.set(
                                convert_uint16_to_float(self.inputs[var_name]),
                                place,
                            )
                        else:
                            tensor.set(self.inputs[var_name], place)
771 772
                    else:
                        tensor.set(self.inputs[var_name], place)
姜永久 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
                feed_map[var_name] = tensor

        return feed_map

    def _append_ops(self, block):
        self.__class__.op_type = (
            self.op_type
        )  # for ci check, please not delete it for now
        if self.is_mkldnn_op():
            self.__class__.use_mkldnn = True

        if self.is_xpu_op():
            self.__class__.use_xpu = True

        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
788 789
        # "infer datatype from inputs and outputs for this test case"

790 791 792 793 794
        if self.is_float16_op():
            self.dtype = np.float16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.float16
        elif self.is_bfloat16_op():
姜永久 已提交
795 796 797 798 799
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
800

姜永久 已提交
801
        inputs = append_input_output(
802
            block, op_proto, self.inputs, True, self.dtype, self.is_calc_ref
姜永久 已提交
803 804
        )
        outputs = append_input_output(
805
            block, op_proto, self.outputs, False, self.dtype, self.is_calc_ref
姜永久 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819
        )

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True,
                )
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
820
            attrs=copy(self.attrs) if hasattr(self, "attrs") else {},
姜永久 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
        )
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)

        return op

    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
        for name, value in numpy_inputs.items():
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
854
            v = base.dygraph.base.to_variable(value=data)
姜永久 已提交
855 856 857
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
            return v
        else:
858
            return base.dygraph.base.to_variable(value)
姜永久 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924

    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if (
                lod[i] != 0
                and lod[i + 1] == 0
                and lod[i + 2] == 0
                and lod[i + 3] != 0
            ):
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert (
            lod[0][0] == 0
            and lod[0][1] == 0
            and lod[0][-1] == 0
            and lod[0][-2] == 0
        )
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

    def append_input_output_for_dygraph(
        self, op_proto, np_list, is_input, if_return_inputs_grad_dict, block
    ):
925 926 927 928 929 930 931
        def create_var(
            np_value,
            name,
            is_input,
            if_return_inputs_grad_dict,
            is_calc_ref=False,
        ):
姜永久 已提交
932 933 934 935 936 937 938 939 940
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
941 942 943 944 945 946 947
                if self.is_calc_ref and np_value_temp.dtype == np.float16:
                    v = self._create_var_from_numpy(
                        np_value_temp.astype(np.float32)
                    )
                else:
                    v = self._create_var_from_numpy(np_value_temp)

姜永久 已提交
948 949
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
W
wanghuancoder 已提交
950
                    v.retain_grads()
姜永久 已提交
951 952 953 954 955 956

                if has_lod:
                    v.value().get_tensor().set_recursive_sequence_lengths(
                        lod_temp
                    )
            else:
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
                if self.is_calc_ref and np_value_temp.dtype == np.float16:
                    v = block.create_var(
                        name=name,
                        dtype=np.float32,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                    )
                else:
                    v = block.create_var(
                        name=name,
                        dtype=np_value_temp.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                    )
姜永久 已提交
973 974 975 976 977 978 979 980 981 982 983 984
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
985
                assert var_proto.intermediate, f"{name} not found"
姜永久 已提交
986 987 988 989 990 991 992 993 994 995
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR
                )
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name], list
996
                ), f"Duplicable {name} should be set as list"
姜永久 已提交
997 998
                var_list = []
                slot_name = name
999
                for name, np_value in np_list[slot_name]:
姜永久 已提交
1000
                    v = create_var(
1001 1002 1003 1004 1005
                        np_value,
                        name,
                        is_input,
                        if_return_inputs_grad_dict,
                        self.is_calc_ref,
姜永久 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
                    )
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(
                    nplist_value_temp,
                    name_temp,
                    is_input,
                    if_return_inputs_grad_dict,
1025
                    self.is_calc_ref,
姜永久 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
                )
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
        """for quick verify, here we take a simplest strategy:
        1. we only check variable in api_outs.
        2. we simply check the numpy (tensor) .
        3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
1045 1046 1047 1048 1049
            assert (
                np_api.shape == np_dyg.shape
            ), "Operator ({}) : Output ({}) shape mismatch, expect shape is {}, but actual shape is {}".format(
                self.op_type, name, np_dyg.shape, np_api.shape
            )
姜永久 已提交
1050 1051 1052 1053 1054
            np.testing.assert_allclose(
                np_api,
                np_dyg,
                rtol=1e-05,
                equal_nan=False,
1055 1056 1057
                err_msg='Operator ('
                + self.op_type
                + ') Output ('
姜永久 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
                + name
                + ') has diff at '
                + str(place)
                + '\nExpect '
                + str(np_dyg)
                + '\n'
                + 'But Got'
                + str(np_api)
                + ' in class '
                + self.__class__.__name__,
            )

    def _calc_python_api_output(self, place, egr_inps=None, egr_oups=None):
        """set egr_inps and egr_oups = None if you want to create it by yourself."""

        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
            if hasattr(self, "python_out_sig"):
                output_sig = self.python_out_sig
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
                assert (
                    len(output_sig) == 1
                ), "Don't support multi-output with multi-tensor output. (May be you can use set `python_out_sig`, see `test_squeeze2_op` as a example.)"
                return {output_sig[0]: ret_tuple}

        def cal_python_api(python_api, args, kernel_sig):
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
1090 1091 1092
            args = OpTestUtils.assumption_assert_and_transform(
                args, len(inputs_sig)
            )
姜永久 已提交
1093
            ret_tuple = python_api(*args)
1094 1095 1096 1097 1098 1099 1100 1101
            result = construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)
            if hasattr(self, "python_out_sig_sub_name"):
                for key in self.python_out_sig_sub_name.keys():
                    for i in range(len(self.python_out_sig_sub_name[key])):
                        result[key][0][i].name = self.python_out_sig_sub_name[
                            key
                        ][i]
            return result
姜永久 已提交
1102

1103 1104
        with base.dygraph.base.guard(place=place):
            block = base.default_main_program().global_block()
姜永久 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
            dygraph_tensor_inputs = (
                egr_inps
                if egr_inps
                else self.append_input_output_for_dygraph(
                    op_proto, self.inputs, True, False, block
                )
            )
            # prepare output variable
            dygraph_tensor_outputs = (
                egr_oups
                if egr_oups
                else self.append_input_output_for_dygraph(
                    op_proto, self.outputs, False, False, block
                )
            )

            # prepare attributes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

1130 1131 1132 1133
            kernel_sig = OpTestUtils._get_kernel_signature(
                self.op_type,
                dygraph_tensor_inputs,
                dygraph_tensor_outputs,
1134
                canonicalize_attrs(attrs_outputs, op_proto),
姜永久 已提交
1135
            )
1136 1137 1138 1139 1140
            if not kernel_sig or (
                len(kernel_sig[0]) == 0
                and len(kernel_sig[1]) == 0
                and len(kernel_sig[2]) == 0
            ):
姜永久 已提交
1141
                return None
W
wanghuancoder 已提交
1142 1143
            if not hasattr(self, "python_api"):
                print(kernel_sig)
姜永久 已提交
1144 1145 1146 1147
            assert hasattr(self, "python_api"), (
                "Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_dygraph = True"
                % self.op_type
            )
1148
            args = OpTestUtils.prepare_python_api_arguments(
姜永久 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157
                self.python_api,
                dygraph_tensor_inputs,
                attrs_outputs,
                kernel_sig,
            )
            """ we directly return the cal_python_api value because the value is already tensor.
            """
            return cal_python_api(self.python_api, args, kernel_sig)

W
wanghuancoder 已提交
1158 1159 1160 1161 1162 1163 1164 1165
    def _calc_dygraph_output(
        self,
        place,
        parallel=False,
        no_check_set=None,
        egr_inps=None,
        egr_oups=None,
    ):
姜永久 已提交
1166 1167 1168
        self.__class__.op_type = (
            self.op_type
        )  # for ci check, please not delete it for now
1169 1170
        with base.dygraph.base.guard(place=place):
            block = base.default_main_program().global_block()
姜永久 已提交
1171 1172 1173 1174

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
W
wanghuancoder 已提交
1175 1176 1177 1178 1179 1180
            inputs = (
                egr_inps
                if egr_inps
                else self.append_input_output_for_dygraph(
                    op_proto, self.inputs, True, False, block
                )
姜永久 已提交
1181 1182
            )
            # prepare output variable
W
wanghuancoder 已提交
1183 1184 1185 1186 1187 1188
            outputs = (
                egr_oups
                if egr_oups
                else self.append_input_output_for_dygraph(
                    op_proto, self.outputs, False, False, block
                )
姜永久 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
            )

            # prepare attributes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None,
            )
            return outputs

1206
    def get_kernel_signature(self, place, egr_inps=None, egr_oups=None):
1207 1208
        with base.dygraph.base.guard(place=place):
            block = base.default_main_program().global_block()
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
            dygraph_tensor_inputs = (
                egr_inps
                if egr_inps
                else self.append_input_output_for_dygraph(
                    op_proto, self.inputs, True, False, block
                )
            )
            # prepare output variable
            dygraph_tensor_outputs = (
                egr_oups
                if egr_oups
                else self.append_input_output_for_dygraph(
                    op_proto, self.outputs, False, False, block
                )
            )

            # prepare attributes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

            kernel_sig = OpTestUtils._get_kernel_signature(
                self.op_type,
                dygraph_tensor_inputs,
                dygraph_tensor_outputs,
                canonicalize_attrs(attrs_outputs, op_proto),
            )
            if not kernel_sig or (
                len(kernel_sig[0]) == 0
                and len(kernel_sig[1]) == 0
                and len(kernel_sig[2]) == 0
            ):
                return None
            if not hasattr(self, "python_api"):
                print(kernel_sig)
            assert hasattr(self, "python_api"), (
                "Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_dygraph = True"
                % self.op_type
            )
            return kernel_sig

    def get_ir_input_attr_dict_and_feed(self, stop_gradient):
        attrs_outputs = {}
        if hasattr(self, "attrs"):
            for attrs_name in self.attrs:
                if self.attrs[attrs_name] is not None:
                    attrs_outputs[attrs_name] = self.attrs[attrs_name]
        input_dict = {}
        static_inputs = defaultdict(list)
        feed = {}
        for name, item in self.inputs.items():
1264
            if isinstance(item, (list, tuple)):
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
                for tup in item:
                    dtype = (
                        "bfloat16"
                        if OpTestUtils.is_bfloat16_type(tup[1].dtype)
                        else tup[1].dtype
                    )
                    x = paddle.static.data(
                        name=str(tup[0]), shape=tup[1].shape, dtype=dtype
                    )
                    x.stop_gradient = stop_gradient
                    static_inputs[name].append(x)
                    feed.update({str(tup[0]): tup[1]})
                    input_dict.update({str(tup[0]): x})
            else:
                dtype = (
                    "bfloat16"
                    if OpTestUtils.is_bfloat16_type(item.dtype)
                    else item.dtype
                )
                x = paddle.static.data(name=name, shape=item.shape, dtype=dtype)
                x.stop_gradient = stop_gradient
                static_inputs[name].append(x)
                feed.update({name: item})
                input_dict.update({name: x})
        return static_inputs, attrs_outputs, input_dict, feed

    def _calc_new_ir_output(
        self, place, no_check_set=None, inps=None, oups=None
    ):
        """set egr_inps and egr_oups = None if you want to create it by yourself."""

        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
            if hasattr(self, "python_out_sig"):
                output_sig = self.python_out_sig
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
                assert (
                    len(output_sig) == 1
                ), "Don't support multi-output with multi-tensor output. (May be you can use set `python_out_sig`, see `test_squeeze2_op` as a example.)"
                return {output_sig[0]: ret_tuple}

        # get kernel signature
        kernel_sig = self.get_kernel_signature(place)
        ir_program = paddle.static.Program()
        with paddle.static.program_guard(ir_program):
            # prepare inps attributes feed
            (
                static_inputs,
                attrs,
                input_dict,
                feed,
            ) = self.get_ir_input_attr_dict_and_feed(stop_gradient=True)
            # prepare args
            args = OpTestUtils.prepare_python_api_arguments(
                self.python_api,
                static_inputs,
                attrs,
                kernel_sig,
            )
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
            args = OpTestUtils.assumption_assert_and_transform(
                args, len(inputs_sig)
            )
            ret_tuple = self.python_api(*args)
            result = construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)
            if hasattr(self, "python_out_sig_sub_name"):
                for key in self.python_out_sig_sub_name.keys():
                    for i in range(len(self.python_out_sig_sub_name[key])):
                        result[key][0][i].name = self.python_out_sig_sub_name[
                            key
                        ][i]
            fetch_list = getattr(self, "fetch_list", [])
            # if the fetch_list is customized by user, we use it directly.
            # if not, fill the fetch_list by the user configured outputs in test.

            if len(fetch_list) == 0:
                for var in result.items():
                    if no_check_set is not None and var in no_check_set:
                        continue
                    if isinstance(var[1], list):
                        for v in var[1]:
                            fetch_list.append(v)
                    else:
                        fetch_list.append(var[1])

            # executor run
            executor = Executor(place)
            (outs,) = executor.run(
1358
                ir_program, feed=feed, fetch_list=[fetch_list]
1359 1360 1361
            )
        return outs

1362 1363 1364 1365 1366 1367 1368 1369 1370
    def _check_ir_output(self, place, program, feed_map, fetch_list, outs):
        if os.getenv("FLAGS_NEW_IR_OPTEST") is None:
            return
        if os.getenv("FLAGS_NEW_IR_OPTEST_WHITE_LIST") is None:
            return
        if self.check_prim:
            return
        if self._check_cinn:
            return
Z
zhangbo9674 已提交
1371 1372 1373 1374 1375 1376
        stored_flag = get_flags(
            [
                'FLAGS_enable_new_ir_in_executor',
                "FLAGS_new_ir_apply_inplace_pass",
            ]
        )
1377
        try:
Z
zhangbo9674 已提交
1378 1379 1380 1381 1382 1383
            set_flags(
                {
                    "FLAGS_enable_new_ir_in_executor": True,
                    "FLAGS_new_ir_apply_inplace_pass": 0,
                }
            )
1384 1385 1386 1387
            new_scope = paddle.static.Scope()
            executor = Executor(place)
            new_program = None
            if isinstance(program, paddle.static.CompiledProgram):
1388
                new_program = base.CompiledProgram(
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
                    program._program, build_strategy=program._build_strategy
                )
            else:
                new_program = program.clone()
            ir_outs = executor.run(
                new_program,
                feed=feed_map,
                fetch_list=fetch_list,
                return_numpy=False,
                scope=new_scope,
K
kangguangli 已提交
1399
            )
1400 1401 1402
            assert len(outs) == len(
                ir_outs
            ), "Fetch result should have same length when executed in new ir"
1403 1404 1405 1406 1407 1408 1409

            check_method = np.testing.assert_array_equal
            if os.getenv("FLAGS_NEW_IR_OPTEST_RELAX_CHECK", None):
                check_method = lambda x, y, z: np.testing.assert_allclose(
                    x, y, err_msg=z, atol=1e-6, rtol=1e-6
                )

1410
            for i in range(len(outs)):
1411
                check_method(
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
                    outs[i],
                    ir_outs[i],
                    err_msg='Operator Check ('
                    + self.op_type
                    + ') has diff at '
                    + str(place)
                    + '\nExpect '
                    + str(outs[i])
                    + '\n'
                    + 'But Got'
                    + str(ir_outs[i])
                    + ' in class '
                    + self.__class__.__name__,
                )
        finally:
            set_flags(stored_flag)
1428

姜永久 已提交
1429 1430 1431 1432 1433 1434 1435 1436
    def _calc_output(
        self,
        place,
        parallel=False,
        no_check_set=None,
        loss=None,
        enable_inplace=None,
        for_inplace_test=None,
1437
        check_cinn=False,
姜永久 已提交
1438
    ):
1439
        with paddle.base.framework._static_guard():
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
            program = Program()
            block = program.global_block()
            op = self._append_ops(block)

            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_map = self.feed_var(inputs, place)

            if for_inplace_test:
                # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
                # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
                # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
                # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
                for out_name in op.output_arg_names:
                    var = block.var(out_name)
                    if 0 in var.shape:
                        var.persistable = True
            original_program = program
            if parallel:
                use_cuda = False
1460
                if isinstance(place, base.CUDAPlace):
1461
                    use_cuda = True
1462
                compiled_prog = base.CompiledProgram(program)
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
                program = compiled_prog
            fetch_list = getattr(self, "fetch_list", [])
            # if the fetch_list is customized by user, we use it directly.
            # if not, fill the fetch_list by the user configured outputs in test.
            if len(fetch_list) == 0:
                for var_name, var in outputs.items():
                    if no_check_set is not None and var_name in no_check_set:
                        continue
                    if isinstance(var, list):
                        for v in var:
                            fetch_list.append(v.name)
                    else:
                        fetch_list.append(var.name)
            # if the fetch_list still empty, fill the fetch_list by the operator output.
            if len(fetch_list) == 0:
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                    fetch_list.append(str(out_name))
姜永久 已提交
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
            enable_cinn_test = check_cinn and self._enable_check_cinn_test(
                place, feed_map, outputs
            )
            if enable_cinn_test:
                if hasattr(self, 'cinn_atol'):
                    self.atol = self.cinn_atol
                if hasattr(self, 'cinn_rtol'):
                    self.rtol = self.cinn_rtol

            if (enable_inplace is not None) or enable_cinn_test:
1491
                build_strategy = base.BuildStrategy()
1492 1493 1494 1495
                if enable_inplace is not None:
                    build_strategy.enable_inplace = enable_inplace
                if enable_cinn_test:
                    build_strategy.build_cinn_pass = check_cinn
1496
                    self._check_cinn = enable_cinn_test
姜永久 已提交
1497

1498
                compiled_prog = base.CompiledProgram(
1499
                    program, build_strategy=build_strategy
1500 1501 1502 1503 1504 1505 1506 1507 1508
                )
                program = compiled_prog

            executor = Executor(place)
            outs = executor.run(
                program,
                feed=feed_map,
                fetch_list=fetch_list,
                return_numpy=False,
姜永久 已提交
1509
            )
1510 1511 1512

            self._check_ir_output(place, program, feed_map, fetch_list, outs)

1513 1514
            self.op = op
            self.program = original_program
姜永久 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list

    def _compare_expect_and_actual_outputs(
        self, place, fetch_list, expect_outs, actual_outs, inplace_atol=None
    ):
        """Compare expect outs and actual outs of an tested op.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs.
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
1543 1544 1545 1546 1547
            assert (
                actual_out.shape == expect_out.shape
            ), "Operator ({}) : Output ({}) shape mismatch, expect shape is {}, but actual shape is {}".format(
                self.op_type, name, expect_out.shape, actual_out.shape
            )
姜永久 已提交
1548 1549 1550 1551 1552 1553
            if inplace_atol is not None:
                np.testing.assert_allclose(
                    expect_out,
                    actual_out,
                    rtol=1e-05,
                    atol=inplace_atol,
1554 1555 1556
                    err_msg='Operator ('
                    + self.op_type
                    + ') Output ('
姜永久 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
                    + name
                    + ') has diff at '
                    + str(place)
                    + ' when using and not using inplace'
                    + '\nExpect '
                    + str(expect_out)
                    + '\n'
                    + 'But Got'
                    + str(actual_out)
                    + ' in class '
                    + self.__class__.__name__,
                )
            else:
                np.testing.assert_array_equal(
                    expect_out,
                    actual_out,
                    err_msg='Output ('
                    + name
                    + ') has diff at '
                    + str(place)
                    + ' when using and not using inplace'
                    + '\nExpect '
                    + str(expect_out)
                    + '\n'
                    + 'But Got'
                    + str(actual_out)
                    + ' in class '
                    + self.__class__.__name__
                    + '\n',
                )

    def _construct_grad_program_from_forward(
        self, fwd_program, grad_op_desc, op_grad_to_var
    ):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in (
            grad_op_desc.input_arg_names() + grad_op_desc.output_arg_names()
        ):
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name
            )
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False,
            )

            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(
        self, place, fwd_res, grad_op_desc, op_grad_to_var
    ):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs.
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        (
            fwd_outs,
            fwd_fetch_list,
            fwd_feed_map,
            fwd_program,
            fwd_op_desc,
        ) = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)

        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
C
co63oc 已提交
1684
        An op needs to run during inplace check if,
姜永久 已提交
1685 1686 1687 1688 1689 1690
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)

        Args:
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
C
co63oc 已提交
1691
                E.g. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
姜永久 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700

        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
1701 1702
            has_infer_inplace = base.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = base.core.has_grad_op_maker(op_desc.type())
姜永久 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
                # get grad_op_desc
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), []
                )
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if (
                            grad_op_desc.type() not in visited_ops
                            and _dfs_grad_op(grad_op_desc, fwd_op_desc=op_desc)
                        ):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(
        self, place, no_check_set=None, inplace_atol=None
    ):
        """Check the inplace correctness of given op (self.op_type).
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs.
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True,
        )
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True,
        )
        # compare expect_outs and actual_outs
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol,
        )
        return expect_res

    def _calc_grad_output(
        self, place, fwd_res, grad_op_desc, enable_inplace=None
    ):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs.
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
1785
        with paddle.base.framework._static_guard():
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
            (
                fwd_outs,
                fwd_fetch_list,
                fwd_feed_map,
                fwd_program,
                fwd_op_desc,
            ) = fwd_res
            grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                fwd_op_desc, set(), []
            )
            grad_program = self._construct_grad_program_from_forward(
                fwd_program, grad_op_desc, op_grad_to_var
            )
            grad_feed_map = self._construct_grad_feed_map_from_forward(
                place, fwd_res, grad_op_desc, op_grad_to_var
姜永久 已提交
1801
            )
1802 1803 1804 1805
            grad_fetch_list = grad_op_desc.output_arg_names()
            exe = Executor(place)
            program = grad_program
            if enable_inplace is not None:
1806
                build_strategy = base.BuildStrategy()
1807
                build_strategy.enable_inplace = enable_inplace
1808
                compiled_program = base.CompiledProgram(
1809
                    grad_program, build_strategy=build_strategy
1810 1811
                )
                program = compiled_program
姜永久 已提交
1812

1813 1814 1815 1816 1817 1818
            outs = exe.run(
                program,
                feed=grad_feed_map,
                fetch_list=grad_fetch_list,
                return_numpy=False,
            )
姜永久 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(
        self, place, fwd_res, grad_op_desc, inplace_atol=None
    ):
        """Check the inplace correctness of given grad_op_desc.

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs.
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False
        )
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True
        )

        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol,
        )
        return expect_res

    def check_inplace_output_with_place(
        self, place, no_check_set=None, inplace_atol=None
    ):
C
co63oc 已提交
1860
        """Check the inplace correctness of given op, its grad op, its grad_grad op, etc.
姜永久 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs.
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        if getattr(self, "no_need_check_inplace", False):
            return

H
hong 已提交
1876 1877 1878
        if os.getenv("FLAGS_enable_new_ir_in_executor"):
            return

1879 1880
        has_infer_inplace = base.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = base.core.has_grad_op_maker(self.op_type)
姜永久 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True
        )
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
1892
            has_infer_inplace = base.core.has_infer_inplace(op_desc.type())
姜永久 已提交
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol,
                    )
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True
                    )
            else:
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1907
                flags_use_mkldnn = base.core.globals()["FLAGS_use_mkldnn"]
姜永久 已提交
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
                attrs_use_mkldnn = hasattr(self, 'attrs') and bool(
                    self.attrs.get('use_mkldnn', False)
                )
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol
                    )
                else:
                    res[op_desc] = self._calc_grad_output(
                        place, fwd_res, op_desc
                    )

    def check_output_with_place(
        self,
        place,
        atol=0,
1930
        rtol=0,
姜永久 已提交
1931 1932 1933
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
1934
        check_prim=False,
1935
        only_check_prim=False,
姜永久 已提交
1936
        inplace_atol=None,
1937
        check_cinn=False,
1938
        check_new_ir=True,
姜永久 已提交
1939
    ):
1940
        core._set_prim_all_enabled(False)
1941
        core.set_prim_eager_enabled(False)
1942

1943
        if hasattr(self, "use_custom_device") and self.use_custom_device:
1944 1945
            check_dygraph = False

姜永久 已提交
1946 1947 1948 1949 1950 1951
        def find_imperative_actual(target_name, dygraph_outs, place):
            for name in dygraph_outs:
                if name == target_name:
                    return dygraph_outs[name][0]
                var_list = dygraph_outs[name]
                for i, var in enumerate(var_list):
1952 1953 1954 1955 1956 1957 1958 1959
                    if isinstance(var, list):
                        for tensor in var:
                            if tensor.name == target_name:
                                return tensor
                    elif (
                        isinstance(var, paddle.Tensor)
                        and var.name == target_name
                    ):
姜永久 已提交
1960 1961 1962
                        return dygraph_outs[name][i]
            self.assertTrue(
                False,
1963
                f"Found failed {dygraph_outs.keys()} {target_name}",
姜永久 已提交
1964 1965
            )

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
        def find_imperative_expect(target_name, dygraph_outs, place):
            for name in dygraph_outs:
                if name == target_name:
                    return dygraph_outs[name][0]
                var_list = dygraph_outs[name]
                for i, var in enumerate(var_list):
                    if var.name == target_name:
                        return dygraph_outs[name][i]
            self.assertTrue(
                False,
1976
                f"Found failed {dygraph_outs.keys()} {target_name}",
1977 1978
            )

姜永久 已提交
1979 1980 1981 1982 1983 1984 1985
        def find_actual(target_name, fetch_list):
            found = [
                i
                for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            self.assertTrue(
1986
                len(found) == 1, f"Found {len(found)} {target_name}"
姜永久 已提交
1987 1988 1989
            )
            return found[0]

1990 1991 1992 1993 1994 1995 1996
        def find_expect(target_name, fetch_list):
            found = [
                i
                for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            self.assertTrue(
1997
                len(found) == 1, f"Found {len(found)} {target_name}"
1998 1999 2000
            )
            return found[0]

姜永久 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
        class Checker:
            """base class for check with self.outputs.
            currently don't support check between checkers.
            """

            def __init__(self, op_test, expect_dict):
                """expect_dict is the self.outputs
                support : {str: [numpy]} and {str: [(str, numpy), (str, numpy)]}
                """
                self.expects = expect_dict
                self.checker_name = "checker"
                self.op_test = op_test  # stop the op_test object.
                self.op_type = op_test.op_type

            def init(self):
                pass

            def convert_uint16_to_float(self, actual_np, expect_np):
                raise NotImplementedError("base class, not implement!")

            def calculate_output(self):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """

            def _is_skip_name(self, name):
                if name not in self.expects:
                    return True
                if no_check_set is not None and name in no_check_set:
                    return True
                return False

            def find_actual_value(self, name):
                """return: (actual_tensor(var_base), actual_numpy)"""
                raise NotImplementedError("base class, not implement!")

2038 2039 2040 2041
            def find_expect_value(self, name):
                """return: (expect_tensor(var_base), actual_numpy)"""
                raise NotImplementedError("base class, not implement!")

姜永久 已提交
2042
            def _compare_numpy(self, name, actual_np, expect_np):
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
                expect_np = np.array(expect_np)
                assert (
                    actual_np.shape == expect_np.shape
                ), "Operator ({}) : Output ({}) shape mismatch, expect shape is {}, but actual shape is {}".format(
                    self.op_type, name, expect_np.shape, actual_np.shape
                )
                np.testing.assert_allclose(
                    actual_np,
                    expect_np,
                    atol=self.atol if hasattr(self, 'atol') else atol,
                    rtol=self.rtol if hasattr(self, 'rtol') else rtol,
                    equal_nan=equal_nan,
                    err_msg=(
                        "Operator ("
                        + self.op_type
                        + ") Output ("
                        + name
                        + ") has diff at "
                        + str(place)
                        + " in "
                        + self.checker_name
姜永久 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072
                    ),
                )

            def _compare_list(self, name, actual, expect):
                """if expect is a tuple, we need to compare list."""
                raise NotImplementedError("base class, not implement!")

            def compare_single_output_with_expect(self, name, expect):
                actual, actual_np = self.find_actual_value(name)
2073
                # expect_np = expect[0] if isinstance(expect, tuple) else expect
2074
                if self.op_test.is_compared_with_fp32():
2075 2076 2077 2078 2079
                    expect, expect_np = self.find_expect_value(name)
                else:
                    expect_np = (
                        expect[0] if isinstance(expect, tuple) else expect
                    )
姜永久 已提交
2080 2081 2082
                actual_np, expect_np = self.convert_uint16_to_float_ifneed(
                    actual_np, expect_np
                )
2083
                # modify there for fp32 check
姜永久 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
                self._compare_numpy(name, actual_np, expect_np)
                if isinstance(expect, tuple):
                    self._compare_list(name, actual, expect)

            def compare_outputs_with_expects(self):
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                    if self._is_skip_name(out_name):
                        continue
                    if out_dup:
                        # if self.output = {'name': [(subname, Tensor), (subname, Tensor)]}
                        sub_out = self.expects[out_name]
                        if not isinstance(sub_out, list):
                            raise AssertionError(
                                "sub_out type %s is not list", type(sub_out)
                            )
                        for item in sub_out:
                            sub_out_name, expect = item[0], item[1]
                            self.compare_single_output_with_expect(
                                sub_out_name, expect
                            )
                    else:
                        expect = self.expects[out_name]
                        self.compare_single_output_with_expect(out_name, expect)

            def check(self):
                """
                return None means ok, raise Error means failed.

                the main enter point of Checker class
                """
                self.init()
                self.calculate_output()
                self.compare_outputs_with_expects()

        class StaticChecker(Checker):
            def init(self):
                self.checker_name = "static checker"

            def calculate_output(self):
                outs, fetch_list = self.op_test._calc_output(
2124
                    place, no_check_set=no_check_set, check_cinn=check_cinn
姜永久 已提交
2125 2126 2127
                )
                self.outputs = outs
                self.fetch_list = fetch_list
2128
                if self.op_test.is_compared_with_fp32():
2129 2130 2131 2132 2133 2134 2135
                    self.op_test.enable_cal_ref_output()
                    ref_outs, ref_fetch_list = self.op_test._calc_output(
                        place, no_check_set=no_check_set
                    )
                    self.op_test.disable_cal_ref_output()
                    self.ref_outputs = ref_outs
                    self.ref_fetch_list = ref_fetch_list
姜永久 已提交
2136 2137 2138 2139 2140 2141 2142

            def find_actual_value(self, name):
                idx = find_actual(name, self.fetch_list)
                actual = self.outputs[idx]
                actual_t = np.array(actual)
                return actual, actual_t

2143 2144 2145 2146 2147 2148
            def find_expect_value(self, name):
                idx = find_expect(name, self.ref_fetch_list)
                expect = self.ref_outputs[idx]
                expect_t = np.array(expect)
                return expect, expect_t

姜永久 已提交
2149 2150 2151 2152 2153
            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """
2154 2155 2156
                if actual_np.dtype == np.uint16:
                    if expect_np.dtype in [np.float32, np.float64]:
                        actual_np = convert_uint16_to_float(actual_np)
姜永久 已提交
2157
                    self.rtol = 1.0e-2
2158 2159
                elif actual_np.dtype == np.float16:
                    self.rtol = 1.0e-3
姜永久 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
                else:
                    self.rtol = 1.0e-5
                if (
                    expect_np.dtype == np.uint16
                    and actual_np.dtype == np.uint16
                ):
                    nonlocal atol
                    expect_np = convert_uint16_to_float(expect_np)
                    actual_np = convert_uint16_to_float(actual_np)
                    atol = max(atol, 0.03)
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
                """if expect is a tuple, we need to compare list."""
                self.op_test.assertListEqual(
                    actual.recursive_sequence_lengths(),
                    expect[1],
                    "Output (" + name + ") has different lod at " + str(place),
                )

        class DygraphChecker(Checker):
            def init(self):
                self.checker_name = "dygraph checker"

            def calculate_output(self):
                # we only check end2end api when check_dygraph=True
                self.is_python_api_test = True
                dygraph_outs = self.op_test._calc_python_api_output(place)
                if dygraph_outs is None:
                    self.is_python_api_test = False
                    # missing KernelSignature, fall back to eager middle output.
                    dygraph_outs = self.op_test._calc_dygraph_output(
                        place, no_check_set=no_check_set
                    )
                self.outputs = dygraph_outs
2195
                if self.op_test.is_compared_with_fp32():
2196 2197
                    self.op_test.enable_cal_ref_output()
                    self.is_python_api_test = True
2198
                    self.ref_outputs = self.op_test._calc_python_api_output(
2199 2200
                        place
                    )
2201
                    if self.ref_outputs is None:
2202
                        self.is_python_api_test = False
2203 2204
                        # missing KernelSignature, fall back to eager middle output.
                        self.ref_outputs = self.op_test._calc_dygraph_output(
2205 2206 2207 2208
                            place, no_check_set=no_check_set
                        )
                    self.op_test.disable_cal_ref_output()

姜永久 已提交
2209
            def _compare_numpy(self, name, actual_np, expect_np):
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
                expect_np = np.array(expect_np)
                assert (
                    actual_np.shape == expect_np.shape
                ), "Operator ({}) : Output ({}) shape mismatch, expect shape is {}, but actual shape is {}".format(
                    self.op_type, name, expect_np.shape, actual_np.shape
                )
                np.testing.assert_allclose(
                    actual_np,
                    expect_np,
                    atol=atol,
                    rtol=self.rtol if hasattr(self, 'rtol') else rtol,
                    equal_nan=equal_nan,
                    err_msg=(
2223 2224 2225
                        "Operator ("
                        + self.op_type
                        + ") Output ("
姜永久 已提交
2226 2227 2228 2229
                        + name
                        + ") has diff at "
                        + str(place)
                        + " in "
2230 2231 2232
                        + self.checker_name
                    ),
                )
姜永久 已提交
2233 2234

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
2235
                if actual_np.dtype == np.uint16:
姜永久 已提交
2236
                    self.rtol = 1.0e-2
2237 2238
                elif actual_np.dtype == np.float16:
                    self.rtol = 1.0e-3
姜永久 已提交
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
                else:
                    self.rtol = 1.0e-5
                if self.op_test.is_bfloat16_op():
                    if actual_np.dtype == np.uint16:
                        actual_np = convert_uint16_to_float(actual_np)
                    if expect_np.dtype == np.uint16:
                        expect_np = convert_uint16_to_float(expect_np)
                return actual_np, expect_np

            def find_actual_value(self, name):
2249
                with base.dygraph.base.guard(place=place):
姜永久 已提交
2250 2251 2252 2253 2254 2255 2256 2257
                    imperative_actual = find_imperative_actual(
                        name, self.outputs, place
                    )
                    imperative_actual_t = np.array(
                        imperative_actual.value().get_tensor()
                    )
                    return imperative_actual, imperative_actual_t

2258
            def find_expect_value(self, name):
2259
                with base.dygraph.base.guard(place=place):
2260 2261 2262 2263 2264 2265 2266 2267
                    imperative_expect = find_imperative_expect(
                        name, self.ref_outputs, place
                    )
                    imperative_expect_t = np.array(
                        imperative_expect.value().get_tensor()
                    )
                    return imperative_expect, imperative_expect_t

姜永久 已提交
2268 2269
            def _compare_list(self, name, actual, expect):
                """if expect is a tuple, we need to compare list."""
2270
                with base.dygraph.base.guard(place=place):
姜永久 已提交
2271 2272 2273 2274 2275
                    self.op_test.assertListEqual(
                        actual.value()
                        .get_tensor()
                        .recursive_sequence_lengths(),
                        expect[1],
2276 2277 2278
                        "Operator ("
                        + self.op_type
                        + ") Output ("
姜永久 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
                        + name
                        + ") has different lod at "
                        + str(place)
                        + " in dygraph mode",
                    )

            def _is_skip_name(self, name):
                # if in final state and kernel signature don't have name, then skip it.
                if (
                    self.is_python_api_test
                    and hasattr(self.op_test, "python_out_sig")
                    and name not in self.op_test.python_out_sig
                ):
                    return True
                return super()._is_skip_name(name)

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
        class NewIRChecker(Checker):
            def init(self):
                self.checker_name = "new ir checker"

            def calculate_output(self):
                self.is_python_api_test = True
                new_ir_outs = self.op_test._calc_new_ir_output(place)
                if new_ir_outs is None:
                    self.is_python_api_test = False
                    # missing KernelSignature, fall back to eager middle output.
                    new_ir_outs = self.op_test._calc_dygraph_output(
                        place, no_check_set=no_check_set
                    )
                self.outputs = new_ir_outs
                if self.op_test.is_compared_with_fp32():
                    self.op_test.enable_cal_ref_output()
                    self.is_python_api_test = True
                    self.ref_outputs = self.op_test._calc_new_ir_output(place)
                    if self.ref_outputs is None:
                        self.is_python_api_test = False
                        # missing KernelSignature, fall back to eager middle output.
                        self.ref_outputs = self.op_test._calc_dygraph_output(
                            place, no_check_set=no_check_set
                        )
                    self.op_test.disable_cal_ref_output()

            def _compare_numpy(self, name, actual_np, expect_np):
                expect_np = np.array(expect_np)
                assert (
                    actual_np.shape == expect_np.shape
                ), "Operator ({}) : Output ({}) shape mismatch, expect shape is {}, but actual shape is {}".format(
                    self.op_type, name, expect_np.shape, actual_np.shape
                )
                np.testing.assert_allclose(
                    actual_np,
                    expect_np,
                    atol=atol,
                    rtol=self.rtol if hasattr(self, 'rtol') else rtol,
                    equal_nan=equal_nan,
                    err_msg=(
                        "Operator ("
                        + self.op_type
                        + ") Output ("
                        + name
                        + ") has diff at "
                        + str(place)
                        + " in "
                        + self.checker_name
                    ),
                )

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                if actual_np.dtype == np.uint16:
                    self.rtol = 1.0e-2
                elif actual_np.dtype == np.float16:
                    self.rtol = 1.0e-3
                else:
                    self.rtol = 1.0e-5
                if self.op_test.is_bfloat16_op():
                    if actual_np.dtype == np.uint16:
                        actual_np = convert_uint16_to_float(actual_np)
                    if expect_np.dtype == np.uint16:
                        expect_np = convert_uint16_to_float(expect_np)
                return actual_np, expect_np

            def find_actual_value(self, target_name):
                with paddle.ir.core.program_guard(
                    paddle.ir.core.default_main_program()
                ):
                    actual = self.outputs
                    actual_t = np.array(actual)
                    return actual, actual_t

            def find_expect_value(self, name):
                with paddle.ir.core.program_guard(
                    paddle.ir.core.default_main_program()
                ):
                    expect = self.ref_outputs
                    expect_t = np.array(expect)
                    return expect, expect_t

            def _compare_list(self, name, actual, expect):
                """if expect is a tuple, we need to compare list."""
                with paddle.ir.core.program_guard(place=place):
                    self.op_test.assertListEqual(
                        actual.value()
                        .get_tensor()
                        .recursive_sequence_lengths(),
                        expect[1],
                        "Operator ("
                        + self.op_type
                        + ") Output ("
                        + name
                        + ") has different lod at "
                        + str(place)
                        + " in dygraph mode",
                    )

            def _is_skip_name(self, name):
                # if in final state and kernel signature don't have name, then skip it.
                if (
                    self.is_python_api_test
                    and hasattr(self.op_test, "python_out_sig")
                    and name not in self.op_test.python_out_sig
                ):
                    return True
                return super()._is_skip_name(name)

姜永久 已提交
2403
        # set some flags by the combination of arguments.
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
        if self.is_float16_op():
            self.dtype = np.float16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.float16
        elif self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
姜永久 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST
        ):
            atol = 0

        if self.is_bfloat16_op():
            if self.is_mkldnn_op():
                check_dygraph = False

2425 2426 2427
                if (
                    hasattr(self, 'force_fp32_output')
                    and self.force_fp32_output
姜永久 已提交
2428
                ):
2429
                    atol = 1e-2 if atol < 1e-2 else atol
姜永久 已提交
2430
                else:
2431
                    atol = 2 if atol < 2 else atol
姜永久 已提交
2432
            else:
2433
                atol = 1e-2 if atol < 1e-2 else atol
2434 2435 2436

        if self.is_float16_op():
            atol = 1e-3 if atol < 1e-3 else atol
姜永久 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445

        if no_check_set is not None:
            if (
                self.op_type
                not in no_check_set_white_list.no_check_set_white_list
            ):
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type
                )
2446 2447 2448 2449 2450 2451 2452

        if check_prim:
            prim_checker = PrimForwardChecker(self, place)
            prim_checker.check()
            # Support operators which are not in the NO_FP64_CHECK_GRAD_OP_LIST list can be test prim with fp32
            self.__class__.check_prim = True
            self.__class__.op_type = self.op_type
2453 2454
            if only_check_prim:
                return
2455

姜永久 已提交
2456 2457 2458 2459 2460 2461 2462 2463
        static_checker = StaticChecker(self, self.outputs)
        static_checker.check()
        outs, fetch_list = static_checker.outputs, static_checker.fetch_list
        if check_dygraph:
            dygraph_checker = DygraphChecker(self, self.outputs)
            dygraph_checker.check()
            dygraph_dygraph_outs = dygraph_checker.outputs

2464 2465 2466
        if (
            self.op_type
            in new_ir_python_api_grad_white_list.new_ir_python_api_grad_white_list
2467
            and check_new_ir
2468 2469
        ):
            if (
2470 2471
                type(place) is paddle.base.libpaddle.CPUPlace
                or type(place) is paddle.base.libpaddle.CUDAPlace
2472 2473
            ):
                print("New IR checker begins...........")
2474
                with paddle.new_ir_utils.IrGuard():
2475 2476 2477 2478 2479
                    new_ir_checker = NewIRChecker(self, self.outputs)
                    new_ir_checker.check()

                print("New IR checker ends...........")

姜永久 已提交
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
        # computation order when multiple threads write the same address. So the
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
        if inplace_atol is not None:
            warnings.warn(
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
        # Check inplace for given op, its grad op, its grad_grad op, etc.
        # No effect on original OpTest
        # Currently not support ParallelExecutor on XPUPlace.
K
Kim Yann 已提交
2494 2495
        if not paddle.is_compiled_with_xpu() and not isinstance(
            place, core.CustomPlace
姜永久 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
        ):
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol
            )

        if check_dygraph:
            return outs, dygraph_dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i
                for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
2518
                    f"Found {len(found)} {target_name}",
姜永久 已提交
2519 2520 2521 2522 2523 2524 2525 2526
                )
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
C
co63oc 已提交
2527
                    # The output is dispensable or intermediate.
姜永久 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile,
                    lod_level_runtime,
                    "The lod_level of Output ("
                    + name
                    + ") is different between compile-time and runtime ("
                    + str(lod_level_compile)
                    + " vs "
                    + str(lod_level_runtime)
                    + ")",
                )

    def _get_places(self):
2557
        if self.dtype == np.float16 or self.dtype == "float16":
姜永久 已提交
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                self.op_type
            ):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
                else:
                    return []
            else:
                return []
2568
        places = [base.CPUPlace()]
姜永久 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if (
            core.is_compiled_with_cuda()
            and core.op_support_gpu(self.op_type)
            and not cpu_only
        ):
            places.append(core.CUDAPlace(0))
        return places

    def check_output(
        self,
        atol=1e-5,
2581
        rtol=1e-5,
姜永久 已提交
2582 2583 2584
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
2585
        check_prim=False,
姜永久 已提交
2586
        inplace_atol=None,
2587
        check_cinn=False,
2588
        only_check_prim=False,
2589
        check_new_ir=True,
姜永久 已提交
2590 2591 2592 2593 2594 2595 2596 2597
    ):
        self.__class__.op_type = self.op_type
        if self.is_mkldnn_op():
            self.__class__.use_mkldnn = True

        if self.is_xpu_op():
            self.__class__.use_xpu = True

2598
        if hasattr(self, "use_custom_device") and self.use_custom_device:
2599 2600
            check_dygraph = False

姜永久 已提交
2601 2602 2603 2604 2605
        places = self._get_places()
        for place in places:
            res = self.check_output_with_place(
                place,
                atol,
2606
                rtol,
姜永久 已提交
2607 2608 2609
                no_check_set,
                equal_nan,
                check_dygraph=check_dygraph,
2610
                check_prim=check_prim,
2611
                only_check_prim=only_check_prim,
姜永久 已提交
2612
                inplace_atol=inplace_atol,
2613
                check_cinn=check_cinn,
2614
                check_new_ir=check_new_ir,
姜永久 已提交
2615
            )
2616 2617
            if not res and only_check_prim:
                continue
姜永久 已提交
2618 2619 2620 2621 2622 2623 2624 2625
            if check_dygraph:
                outs, dygraph_dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
            if (
                self.op_type
                not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST
            ):
2626 2627
                if os.getenv("FLAGS_enable_new_ir_in_executor"):
                    return
姜永久 已提交
2628 2629 2630
                self.check_compile_vs_runtime(fetch_list, outs)

    def check_output_customized(self, checker, custom_place=None):
2631
        self.__class__.op_type = self.op_type
姜永久 已提交
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
        places = self._get_places()
        if custom_place:
            places.append(custom_place)
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
            outs.sort(key=len)
            checker(outs)

    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

    def _assert_is_close(
        self,
        numeric_grads,
        analytic_grads,
        names,
        max_relative_error,
        msg_prefix,
2654
        atol=1e-5,
姜永久 已提交
2655 2656
    ):
        for a, b, name in zip(numeric_grads, analytic_grads, names):
2657 2658 2659 2660 2661
            assert tuple(a.shape) == tuple(
                b.shape
            ), "Operator ({}) : Output ({}) gradient shape mismatch, expect shape is {}, but actual shape is {}".format(
                self.op_type, name, a.shape, b.shape
            )
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
            # Used by bfloat16 for now to solve precision problem
            if self.is_bfloat16_op():
                if a.size == 0:
                    self.assertTrue(b.size == 0)
                np.testing.assert_allclose(
                    b,
                    a,
                    rtol=max_relative_error,
                    atol=atol,
                    equal_nan=False,
                    err_msg=(
2673 2674
                        "Operator {} error, {} variable {} (shape: {}, dtype: {}) max gradient diff over limit"
                    ).format(
2675 2676 2677 2678 2679 2680
                        self.op_type,
                        msg_prefix,
                        name,
                        str(a.shape),
                        self.dtype,
                    ),
姜永久 已提交
2681
                )
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
            else:
                # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
                # max_relative_error is 1e-7. According to the value of np.abs(a), we
                # change np.abs(a) to achieve dynamic threshold. For example, if
                # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
                # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
                # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
                abs_a = np.abs(a)
                if abs_a.ndim > 0:
                    if (
                        self.dtype == np.float64
                        and self.op_type
                        not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
                    ):
                        abs_a[abs_a < 1e-10] = 1e-3
                        abs_a[
                            np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)
                        ] *= 1e4
                        abs_a[
                            np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)
                        ] *= 1e2
                    elif self.is_bfloat16_op():
                        abs_a[abs_a < 1e-2] = 1
                    else:
                        abs_a[abs_a < 1e-3] = 1
                elif abs_a.ndim == 0:
                    if (
                        self.dtype == np.float64
                        and self.op_type
                        not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
                    ):
                        if abs_a < 1e-10:
                            abs_a = 1e-3
                        elif abs_a > 1e-10 and abs_a <= 1e-8:
                            abs_a = abs_a * 1e4
                        elif abs_a > 1e-8 and abs_a <= 1e-6:
                            abs_a = abs_a * 1e2
                    elif self.is_bfloat16_op():
                        abs_a = 1 if abs_a < 1e-2 else abs_a
                    else:
                        abs_a = 1 if abs_a < 1e-3 else abs_a

2724 2725 2726 2727
                if self.dtype == np.bool_:
                    diff_mat = np.abs(a ^ b) / abs_a
                else:
                    diff_mat = np.abs(a - b) / abs_a
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
                max_diff = np.max(diff_mat)

                def err_msg():
                    offset = np.argmax(diff_mat > max_relative_error)
                    return (
                        "Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                        "the first error element is %d, expected %e, but got %e."
                    ) % (
                        self.op_type,
                        msg_prefix,
                        name,
                        str(a.shape),
                        self.dtype,
                        max_diff,
                        max_relative_error,
                        offset,
                        a.flatten()[offset],
                        b.flatten()[offset],
                    )
姜永久 已提交
2747

2748
                self.assertLessEqual(max_diff, max_relative_error, err_msg())
姜永久 已提交
2749 2750

    def _check_grad_helper(self):
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
        if self.is_float16_op():
            self.dtype = np.float16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.float16
        elif self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
姜永久 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

    def check_grad(
        self,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
2777
        check_prim=False,
2778
        only_check_prim=False,
2779
        atol=1e-5,
2780
        check_cinn=False,
2781
        check_new_ir=True,
姜永久 已提交
2782
    ):
2783
        if hasattr(self, "use_custom_device") and self.use_custom_device:
2784 2785
            check_dygraph = False

姜永久 已提交
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
        self._check_grad_helper()
        places = self._get_places()
        for place in places:
            self.check_grad_with_place(
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph=check_dygraph,
2800
                check_prim=check_prim,
2801
                only_check_prim=only_check_prim,
2802
                atol=atol,
2803
                check_cinn=check_cinn,
2804
                check_new_ir=check_new_ir,
姜永久 已提交
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
            )

    def check_grad_with_place(
        self,
        place,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
2819
        check_prim=False,
2820
        only_check_prim=False,
姜永久 已提交
2821
        numeric_place=None,
2822
        atol=1e-5,
2823
        check_cinn=False,
2824
        check_new_ir=True,
姜永久 已提交
2825
    ):
2826
        if hasattr(self, "use_custom_device") and self.use_custom_device:
2827 2828
            check_dygraph = False

2829
        core._set_prim_all_enabled(False)
2830
        core.set_prim_eager_enabled(False)
2831
        if check_prim:
2832
            self._check_grad_helper()
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
            prim_grad_checker = PrimGradChecker(
                self,
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                user_defined_grad_outputs,
            )
            prim_grad_checker.check()
            # Support operators which are not in the NO_FP64_CHECK_GRAD_OP_LIST list can be test prim with fp32
2843
            self.__class__.check_prim = True
2844
            if only_check_prim:
2845
                return
姜永久 已提交
2846
        self.scope = core.Scope()
2847 2848 2849
        op_inputs = self.inputs if hasattr(self, "inputs") else {}
        op_outputs = self.outputs if hasattr(self, "outputs") else {}
        op_attrs = self.attrs if hasattr(self, "attrs") else {}
姜永久 已提交
2850 2851

        self._check_grad_helper()
2852 2853 2854
        if self.is_bfloat16_op():
            if self.is_mkldnn_op():
                check_dygraph = False
2855
            atol = 1e-2 if atol < 1e-2 else atol
2856 2857 2858

        if self.is_float16_op():
            atol = 1e-3 if atol < 1e-3 else atol
姜永久 已提交
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921

        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
        ):
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7

        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"]:
            op_attrs["use_mkldnn"] = False
            use_onednn = True
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list,
        )

        if use_onednn:
            op_attrs["use_mkldnn"] = True

        if no_grad_set is None:
            no_grad_set = set()
        else:
            if (
                (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST)
                and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                )
                and (not self.is_bfloat16_op())
            ):
                raise AssertionError(
                    "no_grad_set must be None, op_type is "
                    + self.op_type
                    + " Op."
                )

        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = functools.reduce(
                lambda a, b: a * b, tensor_to_check.shape(), 1
            )
            tensor_ndim = len(tensor_to_check.shape())
            # for 0D Tensor, it's additional case for OP, so not raise error
            if tensor_ndim > 0 and tensor_size < 100:
                self.__class__.input_shape_is_large = False

        if not type(output_names) is list:
            output_names = [output_names]

        if numeric_place is None:
            numeric_place = place

2922
        if user_defined_grads is None and self.is_compared_with_fp32():
2923
            self.enable_cal_ref_output()
2924

2925 2926 2927
            numeric_grads = self._get_gradient(
                inputs_to_check,
                place,
姜永久 已提交
2928
                output_names,
2929 2930
                no_grad_set,
                user_defined_grad_outputs,
姜永久 已提交
2931
            )
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
            self.disable_cal_ref_output()
        else:
            numeric_grads = user_defined_grads or [
                get_numeric_gradient(
                    numeric_place,
                    self.scope,
                    self.op,
                    self.inputs,
                    input_to_check,
                    output_names,
                    delta=numeric_grad_delta,
                    in_place=in_place,
                )
                for input_to_check in inputs_to_check
            ]

姜永久 已提交
2948 2949 2950 2951 2952 2953
        analytic_grads = self._get_gradient(
            inputs_to_check,
            place,
            output_names,
            no_grad_set,
            user_defined_grad_outputs,
2954
            check_cinn=check_cinn,
姜永久 已提交
2955 2956 2957
        )
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
2958

姜永久 已提交
2959 2960 2961 2962 2963
        fp32_analytic_grads = []
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
                max_relative_error = (
2964
                    0.01 if max_relative_error < 0.01 else max_relative_error
姜永久 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973
                )
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
                max_relative_error = (
2974
                    0.01 if max_relative_error < 0.01 else max_relative_error
姜永久 已提交
2975 2976 2977 2978
                )
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads

2979 2980 2981 2982
        if self.is_float16_op():
            max_relative_error = (
                0.001 if max_relative_error < 0.001 else max_relative_error
            )
姜永久 已提交
2983 2984 2985 2986 2987 2988
        self._assert_is_close(
            numeric_grads,
            analytic_grads,
            inputs_to_check,
            max_relative_error,
            "Gradient Check On %s" % str(place),
2989
            atol=atol,
姜永久 已提交
2990 2991 2992
        )

        if check_dygraph:
2993
            with base.dygraph.base.guard(place):
姜永久 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
                dygraph_dygraph_grad = self._get_dygraph_grad(
                    inputs_to_check,
                    place,
                    output_names,
                    user_defined_grad_outputs,
                    no_grad_set,
                    check_dygraph,
                )
                fp32_grads = []
                for grad in dygraph_dygraph_grad:
                    if grad.dtype == np.uint16:
                        grad = convert_uint16_to_float(grad)
                        max_relative_error = (
                            0.03
                            if max_relative_error < 0.03
                            else max_relative_error
                        )
                    fp32_grads.append(grad)
                dygraph_dygraph_grad = fp32_grads
                self._assert_is_close(
                    numeric_grads,
                    dygraph_dygraph_grad,
                    inputs_to_check,
                    max_relative_error,
                    "Gradient Check On %s" % str(place),
3019
                    atol=atol,
姜永久 已提交
3020
                )
3021

3022 3023 3024 3025
        # get new ir gradient
        if (
            self.op_type
            in new_ir_python_api_grad_white_list.new_ir_python_api_grad_white_list
3026
            and check_new_ir
3027 3028
        ):
            if (
3029 3030
                type(place) is paddle.base.libpaddle.CPUPlace
                or type(place) is paddle.base.libpaddle.CUDAPlace
3031 3032
            ):
                print("New IR gradient begins...........")
3033
                with paddle.new_ir_utils.IrGuard():
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
                    new_ir_grad = self._get_ir_gradient(
                        inputs_to_check,
                        place,
                        output_names,
                        user_defined_grad_outputs,
                        no_grad_set,
                    )
                print("New IR gradient ends...........")
                self._assert_is_close(
                    numeric_grads,
3044
                    new_ir_grad,
3045 3046 3047 3048 3049
                    inputs_to_check,
                    max_relative_error,
                    "Gradient Check On %s" % str(place),
                    atol=atol,
                )
姜永久 已提交
3050 3051 3052 3053 3054 3055 3056

    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
3057 3058 3059 3060 3061 3062 3063 3064
                    if isinstance(output_vars_selected, list):
                        for tensor in output_vars_selected:
                            if tensor.name == name:
                                return [tensor]
                    elif isinstance(output_vars_selected, paddle.Tensor):
                        if output_vars_selected.name == name:
                            return [output_vars_selected]
        raise AssertionError(name, " not in outputs:", output_vars.keys())
姜永久 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074

    def _get_dygraph_grad(
        self,
        inputs_to_check,
        place,
        output_names,
        user_defined_grad_outputs=None,
        no_grad_set=None,
        check_dygraph=True,
    ):
3075
        if hasattr(self, "use_custom_device") and self.use_custom_device:
3076 3077
            check_dygraph = False

3078 3079
        with base.dygraph.base.guard(place=place):
            block = base.default_main_program().global_block()
姜永久 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block
            )

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block
            )

            # prepare attributes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

            if check_dygraph:
                dygraph_outputs = self._calc_python_api_output(
                    place, inputs, outputs
                )
W
wanghuancoder 已提交
3104 3105
                if dygraph_outputs is None:
                    # missing KernelSignature, fall back to eager middle output.
W
wanghuancoder 已提交
3106 3107 3108 3109 3110
                    dygraph_outputs = self._calc_dygraph_output(
                        place, egr_inps=inputs, egr_oups=outputs
                    )

            outputs = dygraph_outputs
姜永久 已提交
3111 3112

            if self.dtype == np.uint16:
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
                cast_inputs = []
                for output_name in output_names:
                    cast_input = self._find_var_in_dygraph(outputs, output_name)
                    cast_inputs = cast_inputs + cast_input
                cast_outputs = []
                for cast_input in cast_inputs:
                    if isinstance(cast_input, paddle.Tensor):
                        cast_outputs.append(
                            paddle.cast(cast_input, core.VarDesc.VarType.FP32)
                        )
                    else:
                        raise TypeError(
                            "Unsupported test data type %s." % type(cast_input)
                        )
姜永久 已提交
3127

3128 3129 3130
                outputs = {}
                for i in range(len(output_names)):
                    outputs.update({output_names[i]: [cast_outputs[i]]})
姜永久 已提交
3131 3132 3133 3134 3135 3136 3137 3138 3139
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name
                )

            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    for outputs_valid_key in outputs_valid:
W
wanghuancoder 已提交
3140
                        loss = paddle.mean(outputs_valid[outputs_valid_key][0])
姜永久 已提交
3141 3142 3143
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
W
wanghuancoder 已提交
3144
                        cur_avg_loss = paddle.mean(outputs_valid[cur_loss][0])
姜永久 已提交
3145
                        avg_sum.append(cur_avg_loss)
W
wanghuancoder 已提交
3146 3147 3148
                    loss_sum = paddle.add_n(avg_sum)
                    loss = paddle.scale(
                        loss_sum, scale=1.0 / float(len(avg_sum))
姜永久 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
                    )
                loss.backward()

                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del inputs[no_grad_val]

W
wanghuancoder 已提交
3168 3169 3170 3171 3172
                grad_inputs = paddle.grad(
                    outputs=paddle.utils.flatten(outputs),
                    inputs=paddle.utils.flatten(inputs),
                    grad_outputs=grad_outputs,
                )
3173
                return [grad.numpy(False) for grad in grad_inputs]
姜永久 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183

    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
            tensor.set_recursive_sequence_lengths(lod)
        return tensor

    @staticmethod
3184
    def np_dtype_to_base_dtype(input):
姜永久 已提交
3185 3186 3187
        return input

    @staticmethod
3188
    def base_dtype_to_np_dtype(self, dtype):
姜永久 已提交
3189 3190 3191
        return dtype

    @staticmethod
3192
    def np_value_to_base_value(input):
姜永久 已提交
3193 3194
        return input

C
co63oc 已提交
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
    def cast_bf16_output(self, block, cast_inputs):
        output_names = []
        for i in range(0, len(cast_inputs)):
            cast_output = block.create_var(
                dtype="float32", shape=cast_inputs[i].shape
            )
            cast_op = block.append_op(
                inputs={"X": cast_inputs[i]},
                outputs={"Out": cast_output},
                type="cast",
                attrs={
                    "in_dtype": core.VarDesc.VarType.BF16,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            cast_op.desc.infer_var_type(block.desc)
            cast_op.desc.infer_shape(block.desc)
            output_names.append(cast_output.name)
        return output_names

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
    def _check_ir_grad_output(
        self, place, program, scope, feed_dict, fetch_list, gradients
    ):
        if os.getenv("FLAGS_NEW_IR_OPTEST") is None:
            return
        if os.getenv("FLAGS_NEW_IR_OPTEST_WHITE_LIST") is None:
            return
        if self.check_prim:
            return
        if self._check_cinn:
            return

Z
zhangbo9674 已提交
3227 3228 3229 3230 3231 3232
        stored_flag = get_flags(
            [
                'FLAGS_enable_new_ir_in_executor',
                "FLAGS_new_ir_apply_inplace_pass",
            ]
        )
3233
        try:
Z
zhangbo9674 已提交
3234 3235 3236 3237 3238 3239
            set_flags(
                {
                    "FLAGS_enable_new_ir_in_executor": True,
                    "FLAGS_new_ir_apply_inplace_pass": 0,
                }
            )
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
            executor = Executor(place)
            new_gradients = list(
                map(
                    np.array,
                    executor.run(
                        program,
                        feed_dict,
                        fetch_list,
                        scope=scope,
                        return_numpy=False,
                    ),
                )
3252 3253
            )

3254 3255 3256 3257 3258 3259
            check_method = np.testing.assert_array_equal
            if os.getenv("FLAGS_NEW_IR_OPTEST_RELAX_CHECK", None):
                check_method = lambda x, y, z: np.testing.assert_allclose(
                    x, y, err_msg=z, atol=1e-6, rtol=1e-6
                )

3260
            for i in range(len(new_gradients)):
3261
                check_method(
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
                    gradients[i],
                    new_gradients[i],
                    err_msg='Operator GradCheck ('
                    + self.op_type
                    + ') has diff at '
                    + str(place)
                    + '\nExpect '
                    + str(gradients[i])
                    + '\n'
                    + 'But Got'
                    + str(new_gradients[i])
                    + ' in class '
                    + self.__class__.__name__,
                )
        finally:
            set_flags(stored_flag)
3278

姜永久 已提交
3279 3280 3281 3282 3283 3284 3285 3286
    def _get_gradient(
        self,
        input_to_check,
        place,
        output_names,
        no_grad_set,
        user_defined_grad_outputs=None,
        parallel=False,
3287
        check_cinn=False,
姜永久 已提交
3288
    ):
3289
        with paddle.base.framework._static_guard():
3290 3291
            prog = Program()
            scope = core.Scope()
3292
            ir_scope = core.Scope()
3293 3294
            block = prog.global_block()
            self._append_ops(block)
姜永久 已提交
3295

3296 3297 3298
            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_dict = self.feed_var(inputs, place)
姜永久 已提交
3299

3300
            if user_defined_grad_outputs is None:
3301
                if self.dtype == np.uint16 and not self.is_calc_ref:
3302
                    cast_inputs = list(map(block.var, output_names))
3303
                    if self.op_type in ["broadcast_tensors", "meshgrid"]:
C
co63oc 已提交
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
                        output_names = self.cast_bf16_output(block, cast_inputs)
                    else:
                        cast_outputs = block.create_var(
                            dtype="float32", shape=cast_inputs[0].shape
                        )
                        cast_op = block.append_op(
                            inputs={"X": cast_inputs},
                            outputs={"Out": cast_outputs},
                            type="cast",
                            attrs={
                                "in_dtype": core.VarDesc.VarType.BF16,
                                "out_dtype": core.VarDesc.VarType.FP32,
                            },
                        )
                        cast_op.desc.infer_var_type(block.desc)
                        cast_op.desc.infer_shape(block.desc)
                        output_names = [cast_outputs.name]
3321 3322 3323 3324 3325
                loss = append_loss_ops(block, output_names)
                param_grad_list = append_backward(
                    loss=loss,
                    parameter_list=input_to_check,
                    no_grad_set=no_grad_set,
姜永久 已提交
3326
                )
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
                fetch_list = [g for p, g in param_grad_list]
            else:
                assert (
                    parallel is False
                ), "unsupported parallel mode when giving custom grad outputs."
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
C
co63oc 已提交
3337
                    # `persistable` is used to avoid executor create new var in local scope
3338 3339 3340 3341 3342 3343 3344 3345 3346
                    var = block.create_var(
                        shape=grad_out_value.shape,
                        dtype=grad_out_value.dtype,
                        persistable=True,
                    )
                    true_var = scope.var(var.name)
                    tensor = true_var.get_tensor()
                    tensor.set(grad_out_value, place)
                    grad_outputs.append(var)
3347 3348 3349 3350 3351
                    if os.getenv("FLAGS_NEW_IR_OPTEST") is not None:
                        ir_true_var = ir_scope.var(var.name)
                        ir_tensor = ir_true_var.get_tensor()
                        ir_tensor.set(grad_out_value, place)

3352 3353 3354 3355 3356 3357 3358 3359
                targets = [
                    outputs[name] for name in outputs if name in output_names
                ]
                inputs = [
                    inputs[name] for name in input_to_check if name in inputs
                ]
                grad_inputs = paddle.static.gradients(
                    targets, inputs, grad_outputs, no_grad_set
姜永久 已提交
3360
                )
3361
                fetch_list = [grad.name for grad in grad_inputs]
3362

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
            enable_cinn_test = check_cinn and self._enable_check_cinn_test(
                place, feed_dict, outputs
            )
            if enable_cinn_test:
                if hasattr(self, 'cinn_atol'):
                    self.atol = self.cinn_atol
                if hasattr(self, 'cinn_rtol'):
                    self.rtol = self.cinn_rtol

            if parallel or enable_cinn_test:
3373
                use_cuda = False
3374
                if isinstance(place, base.CUDAPlace):
3375
                    use_cuda = True
3376 3377 3378

                build_strategy = None
                if enable_cinn_test:
3379
                    build_strategy = base.BuildStrategy()
3380
                    build_strategy.build_cinn_pass = check_cinn
3381
                    self._check_cinn = True
3382

3383
                compiled_prog = base.CompiledProgram(prog, build_strategy)
3384
                prog = compiled_prog
3385
            executor = base.Executor(place)
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
            res = list(
                map(
                    np.array,
                    executor.run(
                        prog,
                        feed_dict,
                        fetch_list,
                        scope=scope,
                        return_numpy=False,
                    ),
姜永久 已提交
3396 3397
                )
            )
3398 3399 3400 3401 3402

            self._check_ir_grad_output(
                place, prog, ir_scope, feed_dict, fetch_list, res
            )

3403
        return res
姜永久 已提交
3404

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
    def _get_ir_gradient(
        self,
        inputs_to_check,
        place,
        output_names,
        user_defined_grad_outputs=None,
        no_grad_set=None,
    ):
        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
            if hasattr(self, "python_out_sig"):
                output_sig = self.python_out_sig
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
                assert (
                    len(output_sig) == 1
                ), "Don't support multi-output with multi-tensor output. (May be you can use set `python_out_sig`, see `test_squeeze2_op` as a example.)"
                return {output_sig[0]: ret_tuple}

        # get kernel signature
        kernel_sig = self.get_kernel_signature(place)
        ir_program = paddle.static.Program()
        with paddle.static.program_guard(ir_program):
            # prepare inps attributes feed
            (
                static_inputs,
                attrs,
                input_dict,
                feed,
            ) = self.get_ir_input_attr_dict_and_feed(stop_gradient=False)
            # prepare args
            args = OpTestUtils.prepare_python_api_arguments(
                self.python_api,
                static_inputs,
                attrs,
                kernel_sig,
            )
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
            args = OpTestUtils.assumption_assert_and_transform(
                args, len(inputs_sig)
            )
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
            grad_outputs = []
            if user_defined_grad_outputs is not None:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                for grad_out_value, idx in zip(
                    user_defined_grad_outputs,
                    range(len(user_defined_grad_outputs)),
                ):
                    grad_val = paddle.static.data(
                        name='val_grad_%s' % idx,
                        shape=grad_out_value.shape,
                        dtype=grad_out_value.dtype,
                    )
                    grad_outputs.append(grad_val)
                    feed.update({'val_grad_%s' % idx: grad_out_value})
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del static_inputs[no_grad_val]

3470
            ret_tuple = self.python_api(*args)
3471 3472 3473
            outputs = construct_output_dict_by_kernel_sig(
                ret_tuple, outputs_sig
            )
3474 3475 3476
            if hasattr(self, "python_out_sig_sub_name"):
                for key in self.python_out_sig_sub_name.keys():
                    for i in range(len(self.python_out_sig_sub_name[key])):
3477
                        outputs[key][0][i].name = self.python_out_sig_sub_name[
3478 3479 3480
                            key
                        ][i]
            fetch_list = getattr(self, "fetch_list", [])
3481

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
            outputs_valid = outputs
            grad_inputs = inputs_to_check
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    for outputs_valid_key in outputs_valid:
                        loss = paddle.mean(outputs_valid[outputs_valid_key][0])
                grad_inputs = ir_grad(
                    outputs=paddle.utils.flatten(loss),
                    inputs=paddle.utils.flatten(static_inputs),
                    grad_outputs=None,
                )
            else:
                grad_inputs = ir_grad(
                    outputs=paddle.utils.flatten(outputs),
                    inputs=paddle.utils.flatten(static_inputs),
                    grad_outputs=grad_outputs,
                )
            fetch_list = list(grad_inputs)

            # executor run
            executor = paddle.static.Executor()
3503
            outs = executor.run(
3504 3505 3506 3507 3508 3509
                ir_program,
                feed=feed,
                fetch_list=fetch_list,
            )
            return outs

姜永久 已提交
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531

class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (
                isinstance(_current_expected_place(), core.CPUPlace)
                and core.supports_bfloat16()
            ),
            "Place does not support BF16 evaluation",
        )

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now",
        )