momentum.py 10.1 KB
Newer Older
J
Jiawei Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable, name_scope
19
from ..fluid.layer_helper import LayerHelper
H
huangxu96 已提交
20 21
from ..fluid import unique_name
from ..fluid import layers
22
import paddle.fluid as fluid
H
huangxu96 已提交
23
from paddle.fluid.regularizer import L2DecayRegularizer
J
Jiawei Wang 已提交
24 25 26 27
__all__ = ["Momentum"]


class Momentum(Optimizer):
28
    r"""
J
Jiawei Wang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

        &\quad   param = param - (gradient + mu * velocity) * learning\_rate

        & else:

        &\quad   param = param - learning\_rate * velocity

    Parameters:

        learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
            It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
        momentum (float): Momentum factor. The default value is 0.9.
        parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
        It canbe a float value as coeff of L2 regularization or \
        :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
        If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
        the regularization setting here in optimizer will be ignored for this parameter. \
        Otherwise, the regularization setting here in optimizer will take effect. \
        Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
H
huangxu96 已提交
67 68 69
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` before updating. \
            Often choose to be ``1.0/batch_size``.
J
Jiawei Wang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")
            momentum = paddle.optimizer.Momentum(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
            back = out.backward()
            momentum.step()
            momentum.clear_grad()
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate=0.001,
                 momentum=0.9,
                 parameters=None,
                 use_nesterov=False,
                 weight_decay=None,
                 grad_clip=None,
H
huangxu96 已提交
100 101
                 multi_precision=False,
                 rescale_grad=1.0,
J
Jiawei Wang 已提交
102 103 104 105 106
                 name=None):
        if learning_rate is None:
            raise ValueError("learning_rate is not set")
        if momentum is None:
            raise ValueError("momentum is not set")
107
        predicate = lambda regular: isinstance(regular, (L2DecayRegularizer, float))
H
huangxu96 已提交
108
        py_regular = None if predicate(weight_decay) else weight_decay
J
Jiawei Wang 已提交
109 110 111
        super(Momentum, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
H
huangxu96 已提交
112
            weight_decay=py_regular,
J
Jiawei Wang 已提交
113 114 115 116 117
            grad_clip=grad_clip,
            name=name)
        self.type = "momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
H
huangxu96 已提交
118 119 120 121 122
        self._regularization_method = ""
        self._regularization_coeff = 0
        if (isinstance(weight_decay, L2DecayRegularizer)):
            self._regularization_method = "l2_decay"
            self._regularization_coeff = weight_decay._regularization_coeff
123 124 125
        if (isinstance(weight_decay, float)):
            self._regularization_method = "l2_decay"
            self._regularization_coeff = weight_decay
H
huangxu96 已提交
126 127 128 129
        self._multi_precision = multi_precision
        self._rescale_grad = rescale_grad
        self._master_weights = {}

130 131 132 133
        if framework.in_dygraph_mode():
            self.helper = LayerHelper(self.__class__.__name__)
            for p in parameters:
                self._add_accumulator(self._velocity_acc_str, p)
J
Jiawei Wang 已提交
134

H
huangxu96 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    def _create_master_weight(self, param):
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_fp32_master"
        var_name = unique_name.generate(var_name)
        var = layers.create_global_var(
            name=var_name,
            shape=param.shape,
            value=0,
            dtype='float32',
            persistable=True)
        block = self.helper.startup_program.global_block()
        block.append_op(
            type="cast",
            inputs={"X": [param]},
            outputs={"Out": [var]},
            attrs={
                "in_dtype": param.dtype,
                "out_dtype": core.VarDesc.VarType.FP32
            })
        self._master_weights[param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        target_param = self._master_weights[
            param.name] if find_master else param
        target_name = target_param.name
        if (name not in self._accumulators or
                target_name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, target_name))
        return self._accumulators[name][target_name]

J
Jiawei Wang 已提交
180
    def _create_accumulators(self, block, parameters):
181 182 183
        if framework.in_dygraph_mode():
            return

J
Jiawei Wang 已提交
184
        assert isinstance(block, framework.Block)
185 186 187 188 189 190 191 192 193 194 195
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
            if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Momentum optimizer."
                )
            self._add_accumulator(self._velocity_acc_str, p)
J
Jiawei Wang 已提交
196 197 198 199 200 201 202 203 204

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
H
huangxu96 已提交
205 206 207 208 209 210
            _, _ = core.ops.momentum(
                param_and_grad[0], param_and_grad[1], velocity_acc, lr,
                param_and_grad[0], velocity_acc, 'mu', self._momentum,
                'use_nesterov', self._use_nesterov, 'regularization_method',
                self._regularization_method, 'regularization_coeff',
                self._regularization_coeff)
J
Jiawei Wang 已提交
211 212
            return None

213 214 215 216 217
        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)

H
huangxu96 已提交
218 219 220 221 222 223 224 225 226
        attrs = {
            "mu": self._momentum,
            "use_nesterov": self._use_nesterov,
            "regularization_method": self._regularization_method,
            "regularization_coeff": self._regularization_coeff,
            "multi_precision": find_master,
            "rescale_grad": self._rescale_grad
        }

J
Jiawei Wang 已提交
227 228 229 230 231 232 233 234 235 236 237
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
            "LearningRate": [lr]
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
H
huangxu96 已提交
238 239 240 241 242

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

J
Jiawei Wang 已提交
243 244 245 246 247 248 249 250 251
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True)

        return momentum_op