op_registry.h 20.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#pragma once

17
#include <algorithm>
18
#include <atomic>
19
#include <memory>
Y
Yang Yang 已提交
20 21
#include <string>
#include <tuple>
Y
Yu Yang 已提交
22
#include <type_traits>
F
WIP  
fengjiayi 已提交
23
#include <typeinfo>
24 25
#include <unordered_map>
#include <unordered_set>
Y
Yu Yang 已提交
26

P
peizhilin 已提交
27
#define GLOG_NO_ABBREVIATED_SEVERITIES  // msvc conflict logging with windows.h
28 29
#include "gflags/gflags.h"
#include "glog/logging.h"  // For VLOG()
Y
Yi Wang 已提交
30 31 32 33 34 35 36
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/details/op_registry.h"
#include "paddle/fluid/framework/grad_op_desc_maker.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/shape_inference.h"
37
#include "paddle/phi/core/kernel_registry.h"
38

W
wanghuancoder 已提交
39 40 41 42 43 44
namespace paddle {
namespace framework {
class ExecutionContext;
}  // namespace framework
}  // namespace paddle

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
namespace paddle {
namespace framework {
namespace proto {

class BlockDesc;
class OpDesc;
class OpDesc_Attr;
class OpDesc_Var;
class OpProto;
class OpProto_Attr;
class OpProto_Var;
class OpVersion;
class OpVersionMap;
class OpVersionMap_OpVersionPair;
class ProgramDesc;
class VarDesc;
class VarType;
class VarType_LoDTensorArrayDesc;
class VarType_LoDTensorDesc;
class VarType_ReaderDesc;
class VarType_TensorDesc;
class VarType_Tuple;
class Version;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

72 73
DECLARE_bool(check_kernel_launch);

74 75
namespace paddle {
namespace framework {
X
Xin Pan 已提交
76

Y
Yu Yang 已提交
77 78 79 80
class Registrar {
 public:
  // In our design, various kinds of classes, e.g., operators and kernels,
  // have their corresponding registry and registrar. The action of
81 82
  // registration is in the constructor of a global registrar variable, which
  // are not used in the code that calls package framework, and would
Y
Yu Yang 已提交
83 84 85 86 87 88
  // be removed from the generated binary file by the linker. To avoid such
  // removal, we add Touch to all registrar classes and make USE_OP macros to
  // call this method. So, as long as the callee code calls USE_OP, the global
  // registrar variable won't be removed by the linker.
  void Touch() {}
};
89

90
template <typename... ARGS>
Y
Yu Yang 已提交
91
struct OperatorRegistrar : public Registrar {
92
  explicit OperatorRegistrar(const char* op_type) {
93
    PADDLE_ENFORCE_EQ(
94 95
        OpInfoMap::Instance().Has(op_type),
        false,
96 97
        platform::errors::AlreadyExists(
            "Operator '%s' is registered more than once.", op_type));
98 99
    static_assert(sizeof...(ARGS) != 0,
                  "OperatorRegistrar should be invoked at least by OpClass");
100
    OpInfo info;
101
    details::OperatorRegistrarRecursive<0, false, ARGS...>(op_type, &info);
Y
Yu Yang 已提交
102
    OpInfoMap::Instance().Insert(op_type, info);
103 104 105
  }
};

106 107
class OpRegistry {
 public:
H
hong 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  /**
   * @brief Return an OperatorBase constructed by type, inputs, outputs, attrs.
   *        In dygraph mode, inputs, output, attrs will be set to empty map to
   *        improve the execution efficiency of dygraph.
   *        Dygraph mode will use:
   *        framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
   *
   * @param[str] type               The operator type.
   * @param[map] inputs             Inputs map of the operator.
   * @param[map] outputs            Outputs map of the operator.
   * @param[unordered_map] attrs    Attributes map of the operator.
   * @param[bool] attr_check
   *            Whether do the attribute check before OperatorBase construction.
   *            Default is true.
   *            Attr_check is used to control the check of attribute map.
   *            The check of attribute map have two purposes:
   *            1. check whether the attribute item is valid or not.
   *            2. add attribute item which has default value
   *            if it is not in attrs.
   *            In dygraph mode, attrs is an empty unordered_map,
   *            attr_check is set to false, otherwise it will be failed
   *            when check function called.
   */
Y
Yu Yang 已提交
131
  static std::unique_ptr<OperatorBase> CreateOp(const std::string& type,
Y
Yu Yang 已提交
132 133
                                                const VariableNameMap& inputs,
                                                const VariableNameMap& outputs,
134
                                                const AttributeMap& attrs,
H
hong 已提交
135
                                                bool attr_check = true);
136 137 138 139 140 141 142
  static std::unique_ptr<OperatorBase> CreateOp(
      const std::string& type,
      const VariableNameMap& inputs,
      const VariableNameMap& outputs,
      const AttributeMap& attrs,
      const AttributeMap& runtime_attrs,
      bool attr_check = true);
Y
Yu Yang 已提交
143

144
  static std::unique_ptr<OperatorBase> CreateOp(const proto::OpDesc& op_desc);
Y
Yu Yang 已提交
145

Y
Yu Yang 已提交
146
  static std::unique_ptr<OperatorBase> CreateOp(const OpDesc& op_desc);
F
Fix bug  
fengjiayi 已提交
147
};
F
fengjiayi 已提交
148

149
template <typename PlaceType>
150
inline void CheckKernelLaunch(const char* op_type) {}
151 152 153 154 155

#ifdef PADDLE_WITH_CUDA
template <>
inline void CheckKernelLaunch<::paddle::platform::CUDAPlace>(
    const char* op_type) {
156 157 158 159
  if (FLAGS_check_kernel_launch) {
    PADDLE_ENFORCE_CUDA_LAUNCH_SUCCESS(op_type);
  }
}
160 161
#endif

162 163 164
template <typename PlaceType, bool at_end, size_t I, typename... KernelType>
struct OpKernelRegistrarFunctor;

165
template <typename PlaceType, typename T, typename Func>
166 167 168 169
inline void RegisterKernelClass(const char* op_type,
                                const char* library_type,
                                int customized_type_value,
                                Func func) {
Y
yuyang18 已提交
170 171 172 173 174
  std::string library(library_type);
  std::string data_layout = "ANYLAYOUT";
  if (library == "MKLDNN") {
    data_layout = "MKLDNNLAYOUT";
  }
175 176 177 178
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (std::is_same<PlaceType, platform::CustomPlace>::value) {
    OpKernelType key(ToDataType(std::type_index(typeid(T))),
                     platform::CustomPlace(library_type),
179
                     phi::StringToDataLayout(data_layout),
180 181 182 183 184 185
                     LibraryType::kPlain,
                     customized_type_value);
    OperatorWithKernel::AllOpKernels()[op_type][key] = func;
    return;
  }
#endif
186 187
  OpKernelType key(ToDataType(std::type_index(typeid(T))),
                   PlaceType(),
188
                   phi::StringToDataLayout(data_layout),
189 190
                   StringToLibraryType(library_type),
                   customized_type_value);
191
  OperatorWithKernel::AllOpKernels()[op_type][key] = func;
Y
yuyang18 已提交
192 193
}

194 195 196 197
template <typename PlaceType, size_t I, typename... KernelTypes>
struct OpKernelRegistrarFunctor<PlaceType, false, I, KernelTypes...> {
  using KERNEL_TYPE =
      typename std::tuple_element<I, std::tuple<KernelTypes...>>::type;
198

199 200
  void operator()(const char* op_type,
                  const char* library_type,
X
Xin Pan 已提交
201
                  int customized_type_value) const {
202
    using T = typename KERNEL_TYPE::ELEMENT_TYPE;
203
    RegisterKernelClass<PlaceType, T>(
204 205 206
        op_type,
        library_type,
        customized_type_value,
X
Xin Pan 已提交
207

208
        [op_type](const framework::ExecutionContext& ctx) {
Y
yuyang18 已提交
209
          KERNEL_TYPE().Compute(ctx);
210
          CheckKernelLaunch<PlaceType>(op_type);
211
        });
212 213
    constexpr auto size = std::tuple_size<std::tuple<KernelTypes...>>::value;
    OpKernelRegistrarFunctor<PlaceType, I + 1 == size, I + 1, KernelTypes...>
214
        func;
X
Xin Pan 已提交
215
    func(op_type, library_type, customized_type_value);
216 217 218 219 220
  }
};

template <typename PlaceType, size_t I, typename... KernelType>
struct OpKernelRegistrarFunctor<PlaceType, true, I, KernelType...> {
221 222
  void operator()(const char* op_type,
                  const char* library_type,
X
Xin Pan 已提交
223
                  int customized_type_value) const {}
224 225
};

M
mozga-intel 已提交
226 227
// User can register many kernel in one place. The data type could be
// different.
228
template <typename PlaceType, typename... KernelType>
F
fengjiayi 已提交
229 230
class OpKernelRegistrar : public Registrar {
 public:
231 232
  explicit OpKernelRegistrar(const char* op_type,
                             const char* library_type,
X
Xin Pan 已提交
233
                             int customized_type_value) {
234
    OpKernelRegistrarFunctor<PlaceType, false, 0, KernelType...> func;
X
Xin Pan 已提交
235
    func(op_type, library_type, customized_type_value);
F
fengjiayi 已提交
236 237 238
  }
};

Y
yuyang18 已提交
239 240 241 242 243 244
template <typename PlaceType, bool at_end, size_t I, typename... KernelType>
struct OpKernelRegistrarFunctorEx;

template <typename PlaceType, typename... DataTypeAndKernelType>
class OpKernelRegistrarEx : public Registrar {
 public:
245 246
  explicit OpKernelRegistrarEx(const char* op_type,
                               const char* library_type,
X
Xin Pan 已提交
247
                               int customized_type_value) {
Y
yuyang18 已提交
248 249
    OpKernelRegistrarFunctorEx<PlaceType, false, 0, DataTypeAndKernelType...>
        func;
X
Xin Pan 已提交
250
    func(op_type, library_type, customized_type_value);
Y
yuyang18 已提交
251 252 253 254
  }
};

template <typename PlaceType, size_t I, typename... DataTypeAndKernelType>
255 256 257
struct OpKernelRegistrarFunctorEx<PlaceType,
                                  true,
                                  I,
Y
yuyang18 已提交
258
                                  DataTypeAndKernelType...> {
259 260
  void operator()(const char* op_type,
                  const char* library_type,
X
Xin Pan 已提交
261
                  int customized_type_value) const {}
Y
yuyang18 已提交
262 263 264
};

template <typename PlaceType, size_t I, typename... DataTypeAndKernelType>
265 266 267
struct OpKernelRegistrarFunctorEx<PlaceType,
                                  false,
                                  I,
Y
yuyang18 已提交
268
                                  DataTypeAndKernelType...> {
269
  using Functor =
Y
yuyang18 已提交
270 271 272 273 274 275
      typename std::tuple_element<I + 1,
                                  std::tuple<DataTypeAndKernelType...>>::type;
  using T =
      typename std::tuple_element<I,
                                  std::tuple<DataTypeAndKernelType...>>::type;

276 277
  void operator()(const char* op_type,
                  const char* library_type,
X
Xin Pan 已提交
278
                  int customized_type_value) const {
279
    RegisterKernelClass<PlaceType, T>(
280 281 282
        op_type,
        library_type,
        customized_type_value,
283 284 285 286 287

        [op_type](const framework::ExecutionContext& ctx) {
          Functor()(ctx);
          CheckKernelLaunch<PlaceType>(op_type);
        });
Y
yuyang18 已提交
288 289 290

    constexpr auto size =
        std::tuple_size<std::tuple<DataTypeAndKernelType...>>::value;
291 292 293
    OpKernelRegistrarFunctorEx<PlaceType,
                               I + 2 >= size,
                               I + 2,
Y
yuyang18 已提交
294 295
                               DataTypeAndKernelType...>
        func;
X
Xin Pan 已提交
296
    func(op_type, library_type, customized_type_value);
Y
yuyang18 已提交
297 298 299
  }
};

X
Xin Pan 已提交
300
// clang-format off
301 302 303
/**
 * check if MACRO is used in GLOBAL NAMESPACE.
 */
Y
Yu Yang 已提交
304 305 306 307 308 309
#define STATIC_ASSERT_GLOBAL_NAMESPACE(uniq_name, msg)                        \
  struct __test_global_namespace_##uniq_name##__ {};                          \
  static_assert(std::is_same<::__test_global_namespace_##uniq_name##__,       \
                             __test_global_namespace_##uniq_name##__>::value, \
                msg)

310 311 312 313 314 315 316 317
/*
  The variadic arguments should be class types derived from one of the
  following classes:
    OpProtoAndCheckerMaker
    GradOpDescMakerBase
    VarTypeInference
    InferShapeBase
*/
Y
yuyang18 已提交
318 319 320 321 322 323 324 325 326
#define REGISTER_OPERATOR(op_type, op_class, ...)                        \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                        \
      __reg_op__##op_type,                                               \
      "REGISTER_OPERATOR must be called in global namespace");           \
  static ::paddle::framework::OperatorRegistrar<op_class, ##__VA_ARGS__> \
      __op_registrar_##op_type##__(#op_type);                            \
  int TouchOpRegistrar_##op_type() {                                     \
    __op_registrar_##op_type##__.Touch();                                \
    return 0;                                                            \
Y
Yu Yang 已提交
327 328
  }

329 330
#define REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, ...) \
  REGISTER_OPERATOR(op_type, op_class, __VA_ARGS__, \
H
hong 已提交
331 332
        paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,   \
        paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>)
D
dongzhihong 已提交
333

D
dongzhihong 已提交
334
/**
335
 * Macro to register OperatorKernel.
D
dongzhihong 已提交
336
 */
X
Xin Pan 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
#define REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(op_type, library_type,             \
                                            place_class, customized_name,      \
                                            customized_type_value, ...)        \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                              \
      __reg_op_kernel_##op_type##_##library_type##_##customized_name##__,      \
                                 "REGISTER_OP_KERNEL must be called in "       \
                                 "global namespace");                          \
  static ::paddle::framework::OpKernelRegistrar<place_class,                   \
                                                __VA_ARGS__>                   \
      __op_kernel_registrar_##op_type##_##library_type##_##customized_name##__(\
          #op_type, #library_type, customized_type_value);                     \
  int TouchOpKernelRegistrar_##op_type##_##library_type##_##customized_name() {\
    __op_kernel_registrar_##op_type##_##library_type##_##customized_name##__   \
        .Touch();                                                              \
    return 0;                                                                  \
F
fengjiayi 已提交
352
  }
D
dongzhihong 已提交
353

X
Xin Pan 已提交
354 355 356 357 358 359
#define REGISTER_OP_KERNEL(op_type, library_type, place_class, ...)   \
  REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(                                \
      op_type, library_type, place_class, DEFAULT_TYPE,               \
      ::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
      __VA_ARGS__)

360
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
QI JUN 已提交
361
#define REGISTER_OP_CUDA_KERNEL(op_type, ...) \
D
dzhwinter 已提交
362
  REGISTER_OP_KERNEL(op_type, CUDA, ::paddle::platform::CUDAPlace, __VA_ARGS__)
363 364 365
#else
#define REGISTER_OP_CUDA_KERNEL(op_type, ...)
#endif
F
fengjiayi 已提交
366

F
fengjiayi 已提交
367 368
#define REGISTER_OP_CPU_KERNEL(op_type, ...) \
  REGISTER_OP_KERNEL(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
Y
Yu Yang 已提交
369

J
jianghaicheng 已提交
370 371 372
#define REGISTER_OP_IPU_KERNEL(op_type, ...) \
  REGISTER_OP_KERNEL(op_type, IPU, ::paddle::platform::IPUPlace, __VA_ARGS__)

373 374 375
#define REGISTER_OP_XPU_KERNEL(op_type, ...) \
  REGISTER_OP_KERNEL(op_type, XPU, ::paddle::platform::XPUPlace, __VA_ARGS__)

376 377 378
#define REGISTER_OP_NPU_KERNEL(op_type, ...) \
  REGISTER_OP_KERNEL(op_type, NPU, ::paddle::platform::NPUPlace, __VA_ARGS__)

F
fwenguang 已提交
379 380 381
#define REGISTER_OP_MLU_KERNEL(op_type, ...) \
  REGISTER_OP_KERNEL(op_type, MLU, ::paddle::platform::MLUPlace, __VA_ARGS__)

X
Xin Pan 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#define REGISTER_OP_KERNEL_EX(op_type, library_type, place_class,  \
                              customized_name,                     \
                              customized_type_value,               \
                              ...)                                 \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                  \
      __reg_op_kernel_##op_type##_##library_type##_##customized_name##__, \
                                 "REGISTER_OP_KERNEL_EX must be called in "  \
                                 "global namespace");  \
  static ::paddle::framework::OpKernelRegistrarEx<place_class,  \
                                                  __VA_ARGS__>  \
      __op_kernel_registrar_##op_type##_##library_type##_##customized_name##__(\
          #op_type, #library_type, customized_type_value);  \
  int TouchOpKernelRegistrar_##op_type##_##library_type##_##customized_name() {\
    __op_kernel_registrar_##op_type##_##library_type##_##customized_name##__   \
        .Touch();                                                              \
    return 0;                                                                  \
Y
yuyang18 已提交
398 399
  }

400
#define REGISTER_OP_CUDA_KERNEL_FUNCTOR(op_type, ...)                 \
X
Xin Pan 已提交
401 402 403 404
  REGISTER_OP_KERNEL_EX(                                              \
      op_type, CUDA, ::paddle::platform::CUDAPlace, DEFAULT_TYPE,     \
      ::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
      __VA_ARGS__)
Y
yuyang18 已提交
405

X
Xin Pan 已提交
406 407 408 409 410
#define REGISTER_OP_CPU_KERNEL_FUNCTOR(op_type, ...)                  \
  REGISTER_OP_KERNEL_EX(                                              \
      op_type, CPU, ::paddle::platform::CPUPlace, DEFAULT_TYPE,       \
      ::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
      __VA_ARGS__)
Y
yuyang18 已提交
411

412 413 414 415 416 417
#define REGISTER_OP_XPU_KERNEL_FUNCTOR(op_type, ...)                  \
  REGISTER_OP_KERNEL_EX(                                              \
      op_type, XPU, ::paddle::platform::XPUPlace, DEFAULT_TYPE,       \
      ::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
      __VA_ARGS__)

418 419 420 421 422 423
#define REGISTER_OP_NPU_KERNEL_FUNCTOR(op_type, ...)                  \
  REGISTER_OP_KERNEL_EX(                                              \
      op_type, NPU, ::paddle::platform::NPUPlace, DEFAULT_TYPE,       \
      ::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
      __VA_ARGS__)

F
fwenguang 已提交
424 425 426 427 428 429
#define REGISTER_OP_MLU_KERNEL_FUNCTOR(op_type, ...)                  \
  REGISTER_OP_KERNEL_EX(                                              \
      op_type, MLU, ::paddle::platform::MLUPlace, DEFAULT_TYPE,       \
      ::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
      __VA_ARGS__)

430 431 432 433 434 435
#define REGISTER_OP_IPU_KERNEL_FUNCTOR(op_type, ...)                  \
  REGISTER_OP_KERNEL_EX(                                              \
      op_type, IPU, ::paddle::platform::IPUPlace, DEFAULT_TYPE,       \
      ::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
      __VA_ARGS__)

436
/**
437 438
 * Macro to mark what Operator and Kernel
 * we will use and tell the compiler to
439 440
 * link them into target.
 */
D
dzhwinter 已提交
441 442 443 444 445 446
#define USE_OP_ITSELF(op_type)                             \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                          \
      __use_op_itself_##op_type,                           \
      "USE_OP_ITSELF must be called in global namespace"); \
  extern int TouchOpRegistrar_##op_type();                 \
  UNUSED static int use_op_itself_##op_type##_ = TouchOpRegistrar_##op_type()
F
fengjiayi 已提交
447

X
Xin Pan 已提交
448 449 450 451 452 453 454 455
#define USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE(op_type,                     \
                                              LIBRARY_TYPE,                \
                                              customized_name)             \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                          \
      __use_op_kernel_##op_type##_##LIBRARY_TYPE##_##customized_name##__,  \
      "USE_OP_DEVICE_KERNEL must be in global namespace");                 \
  extern int                                                               \
      TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE##_##customized_name(); \
456
  UNUSED static int use_op_kernel_##op_type##_##LIBRARY_TYPE##_##customized_name##_ = /* NOLINT */ \
X
Xin Pan 已提交
457 458 459 460
      TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE##_##customized_name()

#define USE_OP_DEVICE_KERNEL(op_type, LIBRARY_TYPE) \
  USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE(op_type, LIBRARY_TYPE, DEFAULT_TYPE)
Y
Yu Yang 已提交
461

462 463
// TODO(fengjiayi): The following macros
// seems ugly, do we have better method?
Y
Yu Yang 已提交
464

465
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
466
#define USE_OP_KERNEL(op_type) USE_OP_DEVICE_KERNEL(op_type, CPU)
Y
Yu Yang 已提交
467
#else
468 469
#define USE_OP_KERNEL(op_type)        \
  USE_OP_DEVICE_KERNEL(op_type, CPU); \
Q
QI JUN 已提交
470
  USE_OP_DEVICE_KERNEL(op_type, CUDA)
Y
Yu Yang 已提交
471
#endif
472

473 474
#define USE_NO_KERNEL_OP(op_type) USE_OP_ITSELF(op_type);

F
WIP  
fengjiayi 已提交
475 476 477
#define USE_CPU_ONLY_OP(op_type) \
  USE_OP_ITSELF(op_type);        \
  USE_OP_DEVICE_KERNEL(op_type, CPU);
478

Q
QI JUN 已提交
479 480 481
#define USE_CUDA_ONLY_OP(op_type) \
  USE_OP_ITSELF(op_type);         \
  USE_OP_DEVICE_KERNEL(op_type, CUDA)
D
Dong Zhihong 已提交
482

F
WIP  
fengjiayi 已提交
483 484 485
#define USE_OP(op_type)   \
  USE_OP_ITSELF(op_type); \
  USE_OP_KERNEL(op_type)
X
Xin Pan 已提交
486
// clang-format on
487

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
template <typename StructureKernel>
struct StructKernelImpl {
  static void Compute(phi::KernelContext* ctx) {
    auto exe_ctx = static_cast<paddle::framework::ExecutionContext*>(ctx);
    StructureKernel().Compute(*exe_ctx);
  }
};

#define PHI_STRUCTURE_KERNEL(...) \
  ::paddle::framework::StructKernelImpl<__VA_ARGS__>::Compute
#define PHI_STRUCTURE_VARIADIC_KERNEL(...) nullptr
#define STRUCTURE_ARG_PARSE_FUNCTOR(...) nullptr

#define STRUCTURE_KERNEL_INSTANTIATION(        \
    meta_kernel_structure, cpp_dtype, context) \
  template class meta_kernel_structure<cpp_dtype, context>;

#define PD_REGISTER_STRUCT_KERNEL(                            \
    kernel_name, backend, layout, meta_kernel_structure, ...) \
  _PD_REGISTER_KERNEL(::phi::RegType::INNER,                  \
                      kernel_name,                            \
                      backend,                                \
                      ::phi::backend##Context,                \
                      layout,                                 \
                      meta_kernel_structure,                  \
                      STRUCTURE_KERNEL_INSTANTIATION,         \
                      STRUCTURE_ARG_PARSE_FUNCTOR,            \
                      PHI_STRUCTURE_KERNEL,                   \
                      PHI_STRUCTURE_VARIADIC_KERNEL,          \
                      __VA_ARGS__)

519 520
}  // namespace framework
}  // namespace paddle