parallel_dygraph_se_resnext.py 10.3 KB
Newer Older
Y
Yan Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import contextlib
import unittest
import numpy as np
import six
import pickle
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
J
Jiabin Yang 已提交
30
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC, LayerNorm
Y
Yan Xu 已提交
31 32
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.layer_helper import LayerHelper
J
Jiabin Yang 已提交
33
import math
Y
Yan Xu 已提交
34 35
from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase

J
Jiabin Yang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
momentum_rate = 0.9
l2_decay = 1.2e-4


def optimizer_setting(params):
    ls = params["learning_strategy"]
    if "total_images" not in params:
        total_images = 6149
    else:
        total_images = params["total_images"]

    batch_size = ls["batch_size"]
    step = int(math.ceil(float(total_images) / batch_size))
    bd = [step * e for e in ls["epochs"]]
    lr = params["lr"]
    num_epochs = params["num_epochs"]
    optimizer = fluid.optimizer.Momentum(
        learning_rate=fluid.layers.cosine_decay(
            learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
        momentum=momentum_rate,
        regularization=fluid.regularizer.L2Decay(l2_decay))

    return optimizer

Y
Yan Xu 已提交
60 61 62 63 64 65 66 67 68 69 70 71

class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__(name_scope)

        self._conv = Conv2D(
J
Jiabin Yang 已提交
72
            "conv2d",
Y
Yan Xu 已提交
73 74 75 76 77 78
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
J
Jiabin Yang 已提交
79 80
            bias_attr=False,
            param_attr=fluid.ParamAttr(name="weights"))
Y
Yan Xu 已提交
81

J
Jiabin Yang 已提交
82
        self._layer_norm = LayerNorm(self.full_name(), begin_norm_axis=1)
Y
Yan Xu 已提交
83 84 85

    def forward(self, inputs):
        y = self._conv(inputs)
86
        y = self._layer_norm(y)
Y
Yan Xu 已提交
87 88 89 90 91 92 93 94 95 96

        return y


class SqueezeExcitation(fluid.dygraph.Layer):
    def __init__(self, name_scope, num_channels, reduction_ratio):

        super(SqueezeExcitation, self).__init__(name_scope)
        self._pool = Pool2D(
            self.full_name(), pool_size=0, pool_type='avg', global_pooling=True)
J
Jiabin Yang 已提交
97
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
Y
Yan Xu 已提交
98 99 100 101
        self._squeeze = FC(
            self.full_name(),
            size=num_channels // reduction_ratio,
            param_attr=fluid.ParamAttr(
J
Jiabin Yang 已提交
102
                initializer=fluid.initializer.Uniform(-stdv, stdv)),
Y
Yan Xu 已提交
103
            act='relu')
J
Jiabin Yang 已提交
104
        stdv = 1.0 / math.sqrt(num_channels / 16.0 * 1.0)
Y
Yan Xu 已提交
105 106 107 108
        self._excitation = FC(
            self.full_name(),
            size=num_channels,
            param_attr=fluid.ParamAttr(
J
Jiabin Yang 已提交
109
                initializer=fluid.initializer.Uniform(-stdv, stdv)),
Y
Yan Xu 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            act='sigmoid')

    def forward(self, input):
        y = self._pool(input)
        y = self._squeeze(y)
        y = self._excitation(y)
        y = fluid.layers.elementwise_mul(x=input, y=y, axis=0)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 stride,
                 cardinality,
                 reduction_ratio,
                 shortcut=True):
        super(BottleneckBlock, self).__init__(name_scope)

        self.conv0 = ConvBNLayer(
            self.full_name(),
            num_filters=num_filters,
J
Jiabin Yang 已提交
134 135
            filter_size=1,
            act="relu")
Y
Yan Xu 已提交
136 137 138 139 140
        self.conv1 = ConvBNLayer(
            self.full_name(),
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
J
Jiabin Yang 已提交
141 142
            groups=cardinality,
            act="relu")
Y
Yan Xu 已提交
143 144
        self.conv2 = ConvBNLayer(
            self.full_name(),
J
Jiabin Yang 已提交
145
            num_filters=num_filters * 2,
Y
Yan Xu 已提交
146
            filter_size=1,
J
Jiabin Yang 已提交
147
            act=None)
Y
Yan Xu 已提交
148 149 150

        self.scale = SqueezeExcitation(
            self.full_name(),
J
Jiabin Yang 已提交
151
            num_channels=num_filters * 2,
Y
Yan Xu 已提交
152 153 154 155 156
            reduction_ratio=reduction_ratio)

        if not shortcut:
            self.short = ConvBNLayer(
                self.full_name(),
J
Jiabin Yang 已提交
157
                num_filters=num_filters * 2,
Y
Yan Xu 已提交
158 159 160 161 162
                filter_size=1,
                stride=stride)

        self.shortcut = shortcut

J
Jiabin Yang 已提交
163
        self._num_channels_out = num_filters * 2
Y
Yan Xu 已提交
164 165 166 167 168 169 170 171 172 173 174 175

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        scale = self.scale(conv2)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

J
Jiabin Yang 已提交
176
        y = fluid.layers.elementwise_add(x=short, y=scale, act='relu')
Y
Yan Xu 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        return y


class SeResNeXt(fluid.dygraph.Layer):
    def __init__(self, name_scope, layers=50, class_dim=102):
        super(SeResNeXt, self).__init__(name_scope)

        self.layers = layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
                self.full_name(),
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            self.pool = Pool2D(
                self.full_name(),
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
                self.full_name(),
J
Jiabin Yang 已提交
213
                num_filters=64,
Y
Yan Xu 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
                filter_size=7,
                stride=2,
                act='relu')
            self.pool = Pool2D(
                self.full_name(),
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
                self.full_name(),
J
Jiabin Yang 已提交
230 231
                num_filters=64,
                filter_size=3,
Y
Yan Xu 已提交
232 233 234 235
                stride=2,
                act='relu')
            self.conv1 = ConvBNLayer(
                self.full_name(),
J
Jiabin Yang 已提交
236 237 238
                num_filters=64,
                filter_size=3,
                stride=1,
Y
Yan Xu 已提交
239 240 241
                act='relu')
            self.conv2 = ConvBNLayer(
                self.full_name(),
J
Jiabin Yang 已提交
242 243 244
                num_filters=128,
                filter_size=3,
                stride=1,
Y
Yan Xu 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
                act='relu')
            self.pool = Pool2D(
                self.full_name(),
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')

        self.bottleneck_block_list = []
        num_channels = 64
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        self.full_name(),
                        num_channels=num_channels,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        cardinality=cardinality,
                        reduction_ratio=reduction_ratio,
                        shortcut=shortcut))
                num_channels = bottleneck_block._num_channels_out
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
            self.full_name(), pool_size=7, pool_type='avg', global_pooling=True)
        stdv = 1.0 / math.sqrt(2048 * 1.0)

J
Jiabin Yang 已提交
276 277 278 279
        self.out = FC(self.full_name(),
                      size=class_dim,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.Uniform(-stdv, stdv)))
Y
Yan Xu 已提交
280

J
Jiabin Yang 已提交
281
    def forward(self, inputs):
Y
Yan Xu 已提交
282 283 284 285 286 287 288 289 290 291 292 293
        if self.layers == 50 or self.layers == 101:
            y = self.conv0(inputs)
            y = self.pool(y)
        elif self.layers == 152:
            y = self.conv0(inputs)
            y = self.conv1(inputs)
            y = self.conv2(inputs)
            y = self.pool(y)

        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
J
Jiabin Yang 已提交
294 295
        y = self.out(y)
        return y
Y
Yan Xu 已提交
296 297 298 299 300 301 302


class TestSeResNeXt(TestParallelDyGraphRunnerBase):
    def get_model(self):
        model = SeResNeXt("se-resnext")
        train_reader = paddle.batch(
            paddle.dataset.flowers.test(use_xmap=False),
303
            batch_size=4,
Y
Yan Xu 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317
            drop_last=True)

        opt = fluid.optimizer.SGD(learning_rate=1e-3)
        return model, train_reader, opt

    def run_one_loop(self, model, opt, data):
        bs = len(data)
        dy_x_data = np.array([x[0].reshape(3, 224, 224)
                              for x in data]).astype('float32')
        y_data = np.array([x[1] for x in data]).astype('int64').reshape(bs, 1)
        img = to_variable(dy_x_data)
        label = to_variable(y_data)
        label.stop_gradient = True

J
Jiabin Yang 已提交
318 319 320 321 322
        out = model(img)
        softmax_out = fluid.layers.softmax(out, use_cudnn=False)
        loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
        avg_loss = fluid.layers.mean(x=loss)
        return avg_loss
Y
Yan Xu 已提交
323 324 325 326


if __name__ == "__main__":
    runtime_main(TestSeResNeXt)