elementwise_kernel.cc 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/elementwise_add_kernel.h"
#include "paddle/phi/kernels/elementwise_divide_kernel.h"
#include "paddle/phi/kernels/elementwise_multiply_kernel.h"
#include "paddle/phi/kernels/elementwise_subtract_kernel.h"

#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, dnnl::algorithm BINARY_OP>
void ElementwiseKernel(const OneDNNContext& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       int axis,
                       DenseTensor* out) {
  const auto& onednn_engine = dev_ctx.GetEngine();

  float scale_x = dev_ctx.HasDnnAttr("Scale_x")
                      ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("Scale_x"))
                      : 1;
  float scale_y = dev_ctx.HasDnnAttr("Scale_y")
                      ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("Scale_y"))
                      : 1;
  float scale_out =
      dev_ctx.HasDnnAttr("Scale_out")
          ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("Scale_out"))
          : 1;

  dnnl::post_ops post_operations;
  funcs::AppendActivation(dev_ctx, post_operations);
46 47 48 49 50 51
  if (dev_ctx.HasDnnAttr("fused_output_scale")) {
    float scale_alpha =
        PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("fused_output_scale"));
    post_operations.append_eltwise(
        1.0, dnnl::algorithm::eltwise_linear, scale_alpha, 0.0f);
  }
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

  auto* non_const_x = &x;
  auto* non_const_y = &y;

  funcs::BinaryOneDNNHandler<T> handler(BINARY_OP,
                                        axis,
                                        onednn_engine,
                                        dev_ctx.GetPlace(),
                                        non_const_x,
                                        non_const_y,
                                        out,
                                        scale_x,
                                        scale_y,
                                        scale_out,
                                        true,
                                        post_operations);

  // oneDNN's binary is optimized for broadcasting y into x, so in other case
  // we have to swap tensors to achieve optimal performance
  if (x.numel() < y.numel()) {
    std::swap(non_const_x, non_const_y);
  }

  const auto src_x_memory = handler.AcquireSrcMemory(non_const_x);
  const auto src_y_memory = handler.AcquireSecondSrcMemory(non_const_y);
  // (jczaja) For Inplace src and dst should be the same memory object.
  // So x should share buffer with z. But UT mechanics is testing inplace
  // execution for this op not checking that x can be bradcasted to match in
  // shape y tensor.
  // This is wrong as when x is to be broadcasted then z(out) will match the
  // shape of y which is bigger than x. Hence if x is smaller in shape than z
  // and they share a buffer (of
  // shape x) then this buffer is not big enough to hold result of elementwise
  // operation.
  const bool reuse_x_memory = non_const_x->numel() == out->numel() &&
                              non_const_x->IsSharedBufferWith(*out);
  std::shared_ptr<dnnl::memory> dst_memory;

  if (reuse_x_memory) {
    dst_memory = src_x_memory;
    // NOTE(chenfeiyu): when the output reuses memory from other tensor rather
    // than allocate its own, it's still need to take care of its data type.
    // Unfortunately, paddle's operator only infers the output' shape, but not
    // the data type. Alloc<T> takes care of allocation and data type
    // normally, but if the memory is already allocated and there is no need
    // to re-allocate, it just set the data type. So this it added there to
    // get the right data type.
    dev_ctx.template Alloc<T>(out);
  } else {
    dst_memory = handler.AcquireDstMemory(out);
  }

  const auto binary_prim = handler.AcquireForwardPrimitive();

  auto& astream = OneDNNContext::tls().get_stream();

  const std::unordered_map<int, dnnl::memory> args = {
      {DNNL_ARG_SRC_0, *src_x_memory},
      {DNNL_ARG_SRC_1, *src_y_memory},
      {DNNL_ARG_DST, *dst_memory}};

  binary_prim->execute(astream, args);
  astream.wait();

  if (handler.use_broadcasting_hack == false) {
    out->set_mem_desc(dst_memory->get_desc());
  } else {
    auto dims = dst_memory->get_desc().dims();
    dims.insert(dims.begin(), non_const_x->dims()[0]);
    dims[1] /= dims[0];
    out->set_mem_desc(dst_memory->get_desc().reshape(dims));
  }
}

#define DEFINE_ONEDNN_ELEMENTWISE_KERNEL(name, algorithm)      \
  template <typename T, typename Context>                      \
  void name##RawKernel(const Context& dev_ctx,                 \
                       const DenseTensor& x,                   \
                       const DenseTensor& y,                   \
                       int axis,                               \
                       DenseTensor* out) {                     \
    ElementwiseKernel<T, algorithm>(dev_ctx, x, y, axis, out); \
  }

DEFINE_ONEDNN_ELEMENTWISE_KERNEL(Divide, dnnl::algorithm::binary_div)

}  // namespace phi

PD_REGISTER_KERNEL(divide_raw,
                   OneDNN,
                   ONEDNN,
                   phi::DivideRawKernel,
                   float,
                   phi::dtype::bfloat16) {}