relu_compute.h 1.6 KB
Newer Older
S
superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
S
update  
superjomn 已提交
16
#include "paddle/fluid/lite/core/kernel.h"
S
superjomn 已提交
17
#include "paddle/fluid/lite/core/op_registry.h"
S
superjomn 已提交
18 19 20 21 22 23

namespace paddle {
namespace lite {
namespace kernels {
namespace host {

S
superjomn 已提交
24
class ReluCompute : public KernelLite<TARGET(kHost), PRECISION(kFloat)> {
S
superjomn 已提交
25
 public:
S
superjomn 已提交
26
  void Run() override {
27 28 29 30 31
    auto& param = Param<operators::ReluParam>();
    auto n = product(param.input->dims());
    const float* input = param.input->data<float>();
    float* output = TensorMutableData<float>(param.output, TARGET(kHost),
                                             product(param.output->dims()));
S
superjomn 已提交
32 33 34 35 36 37 38
    for (int i = 0; i < n; i++) {
      output[i] = std::max(0.f, input[i]);
    }
  }

  TargetType target() const override { return TARGET(kHost); }
  PrecisionType precision() const override { return PRECISION(kFloat); }
S
superjomn 已提交
39 40 41 42 43 44
};

}  // namespace host
}  // namespace kernels
}  // namespace lite
}  // namespace paddle
S
superjomn 已提交
45

S
superjomn 已提交
46
REGISTER_LITE_KERNEL(relu, kHost, kFloat, kNCHW,
47
                     paddle::lite::kernels::host::ReluCompute, def)
S
superjomn 已提交
48
    .Finalize();