lookup_table_utils.py 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import time
import logging

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid import io
from paddle.fluid import Program

__all__ = [
    "load_inference_model", "load_persistable_vars",
    "convert_dist_to_sparse_program"
]

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
_logger = logging.getLogger("lookup_table_utils")
_logger.setLevel(logging.INFO)

model_filename = "__model__"
lookup_table_dir = "__lookup_table__"


def __insert_lookup_sparse_table_op(main_program, idx, ids, w, out):
    main_program.global_block()._insert_op(
        index=idx,
        type="lookup_sparse_table",
        inputs={"Ids": [ids],
                "W": [w]},
        outputs={"Out": [out]},
        attrs={
            "is_distributed": False,
            "is_sparse": True,
            "grad_inplace": False
        })


def __get_prefetch_op_tuples(main_program):
    # current lookup tables op is split_ids->prefetch->merge_ids
    prefetch_op_tuples = None
    op_types = [op.type for op in main_program.global_block().ops]

    for i in range(len(op_types)):
        if op_types[i] == "prefetch":
            if op_types[i - 1] == "split_ids" and op_types[i +
                                                           1] == "merge_ids":
                split_ids_op_id = i - 1
                split_ids_inputs = main_program.global_block().ops[i - 1].input(
                    "Ids")
                prefetch_op_inputs = main_program.global_block().ops[i].input(
                    "X")
                prefetch_op_outputs = main_program.global_block().ops[i].output(
                    "Out")
                merge_ids_outputs = main_program.global_block().ops[
                    i + 1].output("Out")

                need_delete_vars = []
                need_delete_vars.extend(prefetch_op_inputs)
                need_delete_vars.extend(prefetch_op_outputs)

                prefetch_op_tuples = (split_ids_op_id, split_ids_inputs,
                                      merge_ids_outputs, need_delete_vars)
                break
    return prefetch_op_tuples


def convert_dist_to_sparse_program(main_program):
    if not main_program._distributed_lookup_table:
        _logger.warn(
            "There are no distributed lookup tables need to be converted")
        return

    # create table param and grad var in pserver program
    origin_emb_var = "{}.origin".format(main_program._distributed_lookup_table)
    emb_var = main_program._distributed_lookup_table
    main_program.global_block()._rename_var(emb_var, origin_emb_var)
    origin_param_var = main_program.global_block().vars[origin_emb_var]

    param_var = main_program.global_block().create_var(
        name=emb_var,
        shape=origin_param_var.shape,
        dtype=origin_param_var.dtype,
        type=core.VarDesc.VarType.SELECTED_ROWS,
        persistable=True)
    # parameter must be selected rows
    param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
    main_program._sync_with_cpp()

    prefetch_op_tuples = __get_prefetch_op_tuples(main_program)

    split_ids_id = prefetch_op_tuples[0]

    for idx in range(split_ids_id + 2, split_ids_id - 1, -1):
        main_program.global_block()._remove_op(idx)
    main_program.desc.flush()

    in_out_pairs = zip(prefetch_op_tuples[1], prefetch_op_tuples[2])

    for in_out_pair in in_out_pairs:
        idx = split_ids_id
        ids = main_program.global_block().vars[in_out_pair[0]]
        out = main_program.global_block().vars[in_out_pair[1]]
        __insert_lookup_sparse_table_op(main_program, idx, ids, param_var, out)
        main_program.desc.flush()
    return main_program


def load_persistable_vars(executor, dirname, program, lookup_table_var):
    def _is_checkpoint_var(exclude_fluid_vars=None):
        """
        the checkpoint will not save or load all the variables.
        var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.

        : param var(Variable)
        """

        if exclude_fluid_vars is None:
            exclude_fluid_vars = []

        def is_valid(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.RAW:
                return False
            # @GRAD are named for gradient variables, checkpoint will not save it.
            if "@GRAD" in var.name:
                return False
            # .trainer_ are named for distribute train variables, checkpoint will not save it.
            if ".trainer_" in var.name:
                return False

            # .block is named for distribute train variables, checkpoint will not save it.
            if ".block" in var.name:
                return False

            if "tmp_" in var.name:
                return False

            if var.name in exclude_fluid_vars:
                return False

            return var.persistable

        return is_valid

    def _load_lookup_table_vars(executor, dirname, main_program,
                                lookup_table_vars):
        if not os.path.isdir(dirname):
            raise ValueError("There is no directory named '%s'", dirname)

        lookup_table_dirname = os.path.join(dirname, lookup_table_dir)

        emb_var_name = lookup_table_vars[0]
        emb_var = main_program.global_block().var(emb_var_name)

        emb_files = []
        for emb_name in os.listdir(lookup_table_dirname):
            if emb_var_name in emb_name:
                emb_files.append(emb_name)

        convert_program = Program()
        global_block = convert_program.global_block()

        emb_var = global_block.create_var(
            name=emb_var.name,
            shape=emb_var.shape,
            dtype=emb_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
        emb_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)

        sums = []

        for i, emb_file in enumerate(emb_files):
            var_name = "{}_{}".format(emb_var.name, i)
            param_var = global_block.create_var(
                name=var_name,
                shape=emb_var.shape,
                dtype=emb_var.dtype,
                type=core.VarDesc.VarType.SELECTED_ROWS,
                persistable=True)
            param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
            global_block.append_op(
                type='load',
                inputs={},
                outputs={'Out': [param_var]},
                attrs={
                    'file_path': os.path.join(lookup_table_dirname, var_name)
                })
            sums.append(param_var)
        global_block.append_op(
            type='sum', inputs={"X": sums}, outputs={'Out': emb_var}, attrs={})
        global_block.append_op(type='delete_var', inputs={'X': sums})
        executor.run(convert_program)

    _logger.info("Start Load Sparse Program With "
                 "Distributed Lookup Table Vars from {}, time = {}".format(
                     dirname, time.ctime()))

    lookup_table_vars = [lookup_table_var]

    io.load_vars(
        executor,
        dirname=dirname,
        main_program=program,
        predicate=_is_checkpoint_var(lookup_table_vars),
        filename=None)

    _load_lookup_table_vars(executor, dirname, program, lookup_table_vars)

    _logger.info("Finish Load Sparse Program With "
                 "Distributed Lookup Table Vars from {}, time = {}".format(
                     dirname, time.ctime()))


def load_inference_model(dirname, executor, lookup_table_var_name):
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

    local_model = os.path.join(dirname, model_filename)

    with open(local_model, "rb") as f:
        program_desc_str = f.read()

    program = Program.parse_from_string(program_desc_str)

    if not core._is_program_version_supported(program._version()):
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())

    # Binary data also need version.
    load_persistable_vars(executor, dirname, program, lookup_table_var_name)

    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]