dynamic_recurrent_op_test.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
#include "paddle/operators/dynamic_recurrent_op.h"

#include <gtest/gtest.h>

#include "paddle/framework/ddim.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_desc.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"

namespace paddle {
namespace operators {

using framework::Scope;
using framework::TensorArray;
using framework::LoDTensor;
using framework::Variable;

class TestOp : public framework::OperatorBase {
 public:
  using framework::OperatorBase::OperatorBase;
  DEFINE_OP_CLONE_METHOD(TestOp);
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
};

void OpDescNewVar(const std::string& param_name,
                  std::initializer_list<const char*> arguments,
                  paddle::framework::OpDesc::Var* var) {
  var->set_parameter(param_name);
  for (auto& arg_name : arguments) {
    var->add_arguments(arg_name);
  }
}

// create a LoD tensor in scope with specific dims
LoDTensor* CreateVar(Scope& scope, std::string name, framework::DDim dims,
                     const platform::Place& place) {
  auto* var = scope.NewVar(name);
  auto* tensor = var->GetMutable<LoDTensor>();
  tensor->Resize(dims);
  tensor->mutable_data<float>(place);
  return tensor;
}

class DynamicRecurrentOpTestHelper : public ::testing::Test {
 protected:
  const rnn::ArgumentName argname = DynamicRecurrentOp::kArgName;

  virtual void SetUp() override {
    CreateGlobalVariables();

    auto op_desc = CreateOpDesc();
    op = paddle::framework::OpRegistry::CreateOp(op_desc);
    dop = dynamic_cast<DynamicRecurrentOp*>(op.get());
    InitCacheManually();
    InitStepNet();
  }

  framework::OpDesc CreateOpDesc() {
    // create op
    paddle::framework::OpDesc op_desc;
    op_desc.set_type("dynamic_recurrent");

    OpDescNewVar(argname.inlinks, {"in0"}, op_desc.add_inputs());
    OpDescNewVar(argname.boot_memories, {"boot_mem"}, op_desc.add_inputs());
    OpDescNewVar(argname.step_scopes, {"step_scopes"}, op_desc.add_outputs());
    OpDescNewVar(argname.outlinks, {"out0"}, op_desc.add_outputs());

    // set pre-memories
    auto pre_memories = op_desc.mutable_attrs()->Add();
    pre_memories->set_name(argname.pre_memories);
    pre_memories->set_type(paddle::framework::AttrType::STRINGS);
    auto pre_memories_item = pre_memories->add_strings();
    *pre_memories_item = "mem@pre";

    // set memories
    auto memories = op_desc.mutable_attrs()->Add();
    memories->set_name(argname.memories);
    memories->set_type(paddle::framework::AttrType::STRINGS);
    auto memories_item = memories->add_strings();
    *memories_item = "mem";
    return op_desc;
  }

  void CreateGlobalVariables() {
    platform::CPUPlace place;
    scope.NewVar("step_scopes");
    CreateVar(scope, "boot_mem", framework::make_ddim({10, 20}), place);
    // auto* out0 =
    CreateVar(scope, "out0", framework::make_ddim({10, 20}), place);
    auto* in0 = CreateVar(scope, "in0", framework::make_ddim({10, 8}), place);
    // 10 instanes with 4 sentences, length is 4, 3, 2, 1 respectively.
    framework::LoD in0_lod(1);
    for (int x : std::vector<int>{0, 4, 7, 9, 10}) {
      in0_lod[0].push_back(x);
    }
    in0->set_lod(in0_lod);
    in0->Resize(framework::make_ddim({10, 8}));
    // set the content, each sentence content is seqid.batchid
    // the seqid starts from 0
    int start = 0;
    for (size_t seqid = 0; seqid < in0_lod.size() - 1; seqid++) {
      for (size_t batchid = 0;
           batchid < in0_lod[0][seqid + 1] - in0_lod[0][seqid]; batchid++) {
        float v = seqid + batchid * 0.1;

        for (size_t dim = 0; dim < 8; dim++) {
          in0->data<float>()[start * 8 + dim] = v;
        }
        start++;
      }
    }
  }

  void InitCacheManually() {
    dop->cache_.Init(DynamicRecurrentOp::kArgName, *dop, scope, &dop->arg_);
  }

  void InitStepNet() {
    std::unique_ptr<framework::OperatorBase> stepnet{new NetOp};
    dynamic_cast<NetOp*>(stepnet.get())
        ->AppendOp(std::unique_ptr<TestOp>(new TestOp(
            "test", {{"inlinks", {"in0"}}, {"boot_memories", {"boot_mem"}}},
            {{"outlinks", {"out0"}}, {"step_scopes", {"step_scopes"}}}, {})));
    dop->SetStepNet(std::move(stepnet));
  }

 protected:
  DynamicRecurrentOp* dop;
  std::unique_ptr<framework::OperatorBase> op;
  paddle::platform::CPUDeviceContext device_context;
  paddle::framework::Scope scope;
};

TEST_F(DynamicRecurrentOpTestHelper, CreateCache) {
  const rnn::Argument& arg = dop->arg_;
  ASSERT_EQ(arg.inlinks.size(), 1UL);
  ASSERT_EQ(arg.outlinks.size(), 1UL);
}

TEST_F(DynamicRecurrentOpTestHelper, SplitInputs) {
  dop->SplitInputs();
  auto& in0_ta = dop->step_inputs_["in0"];
  ASSERT_EQ(in0_ta.size(), 4UL);

  const auto& batch0 = in0_ta.Read(0);
  const auto& batch1 = in0_ta.Read(1);
  const auto& batch2 = in0_ta.Read(2);
  const auto& batch3 = in0_ta.Read(3);
  EXPECT_EQ(batch0.dims()[0], 4);
  EXPECT_EQ(batch1.dims()[0], 3);
  EXPECT_EQ(batch2.dims()[0], 2);
  EXPECT_EQ(batch3.dims()[0], 1);
}

TEST_F(DynamicRecurrentOpTestHelper, CreateScopes) {
  dop->SplitInputs();
  dop->CreateScopes();
  ASSERT_EQ(dop->cache_.num_steps, 4UL);
  ASSERT_EQ(dop->cache_.scopes->size(), 4UL);
}

TEST_F(DynamicRecurrentOpTestHelper, WriteStepInputs) {
  dop->SplitInputs();
  dop->CreateScopes();
  dop->WriteStepInputs();

  for (size_t step = 0; step < dop->cache_.num_steps; step++) {
    auto& scope = dop->cache_.GetScope(step);
    for (auto name : std::vector<std::string>({"in0"})) {
      ASSERT_TRUE(scope.FindVar(name) != nullptr);
    }
  }
}

TEST_F(DynamicRecurrentOpTestHelper, WriteStepOutputs) {
  dop->SplitInputs();
  dop->CreateScopes();
  dop->WriteStepInputs();
  dop->WriteStepOutputs();

  for (size_t step = 0; step < dop->cache_.num_steps; step++) {
    auto& scope = dop->cache_.GetScope(step);
    for (auto name : std::vector<std::string>({"out0"})) {
      ASSERT_TRUE(scope.FindVar(name));
    }
  }
}

TEST_F(DynamicRecurrentOpTestHelper, ConcatOutputs) {
  // Let's leave this test to python unittest.
}

TEST_F(DynamicRecurrentOpTestHelper, InitStates) {
  dop->SplitInputs();
  dop->CreateScopes();
  dop->WriteStepInputs();
  dop->WriteStepOutputs();
  dop->InitStates();

  for (size_t step = 0; step < dop->cache_.num_steps; step++) {
    auto& scope = dop->cache_.GetScope(step);
    auto state = scope.FindVar("mem");
    ASSERT_TRUE(state != nullptr);

    auto* pre_state = scope.FindVar("mem@pre");
    ASSERT_TRUE(pre_state != nullptr);

    auto* boot_state = scope.FindVar("boot_mem");
    ASSERT_TRUE(boot_state != nullptr);

    if (step == 0) {
      // check pre_state is a reference of boot_state
      ASSERT_EQ(boot_state->Get<LoDTensor>().data<float>(),
                pre_state->Get<LoDTensor>().data<float>());
    }
  }
}

}  // operators
}  // namespace paddle