bipartite_match_op.cc 9.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class BipartiteMatchOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
29 30
    PADDLE_ENFORCE(ctx->HasInput("DistMat"),
                   "Input(DistMat) of BipartiteMatch should not be null.");
D
dangqingqing 已提交
31 32 33 34 35 36
    PADDLE_ENFORCE(
        ctx->HasOutput("ColToRowMatchIndices"),
        "Output(ColToRowMatchIndices) of BipartiteMatch should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("ColToRowMatchDist"),
        "Output(ColToRowMatchDist) of BipartiteMatch should not be null.");
37

D
dangqingqing 已提交
38 39
    auto dims = ctx->GetInputDim("DistMat");
    PADDLE_ENFORCE_EQ(dims.size(), 2, "The rank of Input(DistMat) must be 2.");
40 41

    ctx->SetOutputDim("ColToRowMatchIndices", dims);
D
dangqingqing 已提交
42
    ctx->SetOutputDim("ColToRowMatchDist", dims);
43 44 45 46 47 48 49 50
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<LoDTensor>("DistMat")->type()),
        platform::CPUPlace());
51 52 53 54 55 56 57
  }
};

template <typename T>
class BipartiteMatchKernel : public framework::OpKernel<T> {
 public:
  // The match_indices must be initialized to -1 at first.
58 59 60
  // The match_dist must be initialized to 0 at first.
  void BipartiteMatch(const Tensor& dist, int* match_indices,
                      T* match_dist) const {
61
    constexpr T kEPS = static_cast<T>(1e-6);
62 63 64 65
    PADDLE_ENFORCE_EQ(dist.dims().size(), 2, "The rank of dist must be 2.");
    int64_t row = dist.dims()[0];
    int64_t col = dist.dims()[1];
    auto* dist_data = dist.data<T>();
66 67 68 69 70 71 72
    std::vector<int> row_pool;
    for (int i = 0; i < row; ++i) {
      row_pool.push_back(i);
    }
    while (row_pool.size() > 0) {
      int max_idx = -1;
      int max_row_idx = -1;
73
      T max_dist = -1;
74 75 76 77
      for (int64_t j = 0; j < col; ++j) {
        if (match_indices[j] != -1) {
          continue;
        }
D
dangqingqing 已提交
78
        for (size_t k = 0; k < row_pool.size(); ++k) {
79 80
          int m = row_pool[k];
          // distance is 0 between m-th row and j-th column
81
          if (dist_data[m * col + j] < kEPS) {
82 83
            continue;
          }
84
          if (dist_data[m * col + j] > max_dist) {
85 86
            max_idx = j;
            max_row_idx = m;
87
            max_dist = dist_data[m * col + j];
88 89 90 91 92 93 94 95 96
          }
        }
      }
      if (max_idx == -1) {
        // Cannot find good match.
        break;
      } else {
        PADDLE_ENFORCE_EQ(match_indices[max_idx], -1);
        match_indices[max_idx] = max_row_idx;
97
        match_dist[max_idx] = max_dist;
98 99 100 101 102 103 104
        // Erase the row index.
        row_pool.erase(
            std::find(row_pool.begin(), row_pool.end(), max_row_idx));
      }
    }
  }

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  void ArgMaxMatch(const Tensor& dist, int* match_indices, T* match_dist,
                   T overlap_threshold) const {
    constexpr T kEPS = static_cast<T>(1e-6);
    int64_t row = dist.dims()[0];
    int64_t col = dist.dims()[1];
    auto* dist_data = dist.data<T>();
    for (int64_t j = 0; j < col; ++j) {
      if (match_indices[j] != -1) {
        // the j-th column has been matched to one entity.
        continue;
      }
      int max_row_idx = -1;
      T max_dist = -1;
      for (int i = 0; i < row; ++i) {
        T dist = dist_data[i * col + j];
        if (dist < kEPS) {
          // distance is 0 between m-th row and j-th column
          continue;
        }
        if (dist >= overlap_threshold && dist > max_dist) {
          max_row_idx = i;
          max_dist = dist;
        }
      }
      if (max_row_idx != -1) {
        PADDLE_ENFORCE_EQ(match_indices[j], -1);
        match_indices[j] = max_row_idx;
        match_dist[j] = max_dist;
      }
    }
  }

137
  void Compute(const framework::ExecutionContext& context) const override {
D
dangqingqing 已提交
138
    auto* dist_mat = context.Input<LoDTensor>("DistMat");
139
    auto* match_indices = context.Output<Tensor>("ColToRowMatchIndices");
D
dangqingqing 已提交
140
    auto* match_dist = context.Output<Tensor>("ColToRowMatchDist");
141 142 143

    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

144
    auto col = dist_mat->dims()[1];
145

146
    int64_t n = dist_mat->lod().size() == 0UL
147
                    ? 1
148 149 150 151 152
                    : static_cast<int64_t>(dist_mat->lod().back().size() - 1);
    if (dist_mat->lod().size()) {
      PADDLE_ENFORCE_EQ(dist_mat->lod().size(), 1UL,
                        "Only support 1 level of LoD.");
    }
153
    match_indices->mutable_data<int>({n, col}, context.GetPlace());
154
    match_dist->mutable_data<T>({n, col}, context.GetPlace());
155 156 157 158

    math::SetConstant<platform::CPUDeviceContext, int> iset;
    iset(dev_ctx, match_indices, static_cast<int>(-1));
    math::SetConstant<platform::CPUDeviceContext, T> tset;
159
    tset(dev_ctx, match_dist, static_cast<T>(0));
160 161

    int* indices = match_indices->data<int>();
162
    T* dist = match_dist->data<T>();
163 164
    auto type = context.Attr<std::string>("match_type");
    auto threshold = context.Attr<float>("dist_threshold");
165
    if (n == 1) {
166
      BipartiteMatch(*dist_mat, indices, dist);
167 168 169
      if (type == "per_prediction") {
        ArgMaxMatch(*dist_mat, indices, dist, threshold);
      }
170
    } else {
171
      auto lod = dist_mat->lod().back();
172
      for (size_t i = 0; i < lod.size() - 1; ++i) {
173 174
        Tensor one_ins = dist_mat->Slice(lod[i], lod[i + 1]);
        BipartiteMatch(one_ins, indices + i * col, dist + i * col);
175 176 177
        if (type == "per_prediction") {
          ArgMaxMatch(one_ins, indices + i * col, dist + i * col, threshold);
        }
178 179 180 181 182 183 184 185 186 187
      }
    }
  }
};

class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  BipartiteMatchOpMaker(OpProto* proto, OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
D
dangqingqing 已提交
188
        "DistMat",
189 190 191 192
        "(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
        "[K, M]. It is pair-wise distance matrix between the entities "
        "represented by each row and each column. For example, assumed one "
        "entity is A with shape [K], another entity is B with shape [M]. The "
D
dangqingqing 已提交
193
        "DistMat[i][j] is the distance between A[i] and B[j]. The bigger "
194
        "the distance is, the better macthing the pairs are. Please note, "
195 196 197
        "This tensor can contain LoD information to represent a batch of "
        "inputs. One instance of this batch can contain different numbers of "
        "entities.");
198 199 200 201 202 203 204 205 206 207 208 209 210
    AddAttr<std::string>(
        "match_type",
        "(string, defalut: per_prediction) "
        "The type of matching method, should be 'bipartite' or "
        "'per_prediction', 'bipartite' by defalut.")
        .SetDefault("bipartite")
        .InEnum({"bipartite", "per_prediction"});
    AddAttr<float>(
        "dist_threshold",
        "(float, defalut: 0.5) "
        "If `match_type` is 'per_prediction', this threshold is to determine "
        "the extra matching bboxes based on the maximum distance.")
        .SetDefault(0.5);
211 212 213 214 215
    AddOutput("ColToRowMatchIndices",
              "(Tensor) A 2-D Tensor with shape [N, M] in int type. "
              "N is the batch size. If ColToRowMatchIndices[i][j] is -1, it "
              "means B[j] does not match any entity in i-th instance. "
              "Otherwise, it means B[j] is matched to row "
216 217
              "ColToRowMatchIndices[i][j] in i-th instance. The row number of "
              "i-th instance is saved in ColToRowMatchIndices[i][j].");
D
dangqingqing 已提交
218
    AddOutput("ColToRowMatchDist",
219 220
              "(Tensor) A 2-D Tensor with shape [N, M] in float type. "
              "N is batch size. If ColToRowMatchIndices[i][j] is -1, "
D
dangqingqing 已提交
221
              "ColToRowMatchDist[i][j] is also -1.0. Otherwise, assumed "
222
              "ColToRowMatchIndices[i][j] = d, and the row offsets of each "
223
              "instance are called LoD. Then "
D
dangqingqing 已提交
224
              "ColToRowMatchDist[i][j] = DistMat[d+LoD[i]][j]");
225 226
    AddComment(R"DOC(
This operator is a greedy bipartite matching algorithm, which is used to
227 228 229 230 231
obtain the matching with the maximum distance based on the input
distance matrix. For input 2D matrix, the bipartite matching algorithm can
find the matched column for each row, also can find the matched row for
each column. And this operator only calculate matched indices from column
to row. For each instance, the number of matched indices is the number of
232
of columns of the input distance matrix.
233 234

There are two outputs to save matched indices and distance.
235
A simple description, this algorithm matched the best (maximum distance)
236 237 238 239
row entity to the column entity and the matched indices are not duplicated
in each row of ColToRowMatchIndices. If the column entity is not matched
any row entity, set -1 in ColToRowMatchIndices.

D
dangqingqing 已提交
240
Please note that the input DistMat can be LoDTensor (with LoD) or Tensor.
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
If Tensor, the height of ColToRowMatchIndices is 1.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(bipartite_match, ops::BipartiteMatchOp,
                  ops::BipartiteMatchOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(bipartite_match, ops::BipartiteMatchKernel<float>,
                       ops::BipartiteMatchKernel<double>);