pyramid_hash_op.cc 17.0 KB
Newer Older
A
Aurelius84 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <xxhash.h>
#include <algorithm>
#include <cmath>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/search_compute.h"

extern "C" {
#include "math/bloomfilter.h"
}

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

class PyramidHashOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "X (Tensor, MUST be Tensor<!!!_int32_!!!>) Input variable which "
             "should contain lod information.");
    AddInput("W", "W (Tensor)");
    AddInput("WhiteList", "WhiteList (Tensor)");
    AddInput("BlackList", "BlackList (Tensor)");
    AddAttr<int>("num_emb", "num_emb").SetDefault(0).EqualGreaterThan(0);
    AddAttr<int>("space_len", "space_len").SetDefault(0).EqualGreaterThan(0);
    AddAttr<int>("pyramid_layer", "pyramid_layer (must be >= 2)")
        .SetDefault(2)
        .EqualGreaterThan(2);
    AddAttr<int>("rand_len", "rand_len").SetDefault(0).EqualGreaterThan(0);
    AddAttr<float>("drop_out_percent", "drop_out_percent")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddAttr<int>("is_training", "is_training")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddAttr<bool>("use_filter", "use_filter").SetDefault(true);
    AddAttr<int>("white_list_len", "white_list_len")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddAttr<int>("black_list_len", "black_list_len")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddAttr<int>("seed", "seed").SetDefault(0).EqualGreaterThan(0);
    AddAttr<float>("lr", "learning rate").SetDefault(0.0).EqualGreaterThan(0.0);
C
Chengmo 已提交
62 63 64 65 66 67
    AddAttr<std::string>(
        "distribute_update_vars",
        "['PyramidHash_emb_0','Filter']"
        "Decided which params should be updated in distribute training. "
        "Used in Distribute Transpiler to create a trainer/server program.")
        .SetDefault("");
A
Aurelius84 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    AddOutput("Out", "Out (Tensor, default Tensor<float>) Output variable");
    AddOutput("DropPos", "Out (Tensor, Tensor<int>) Output variable");
    AddOutput("X_Temp_Out", "Out (Tensor, Tensor<int>) Output variable")
        .AsIntermediate();

    AddComment(R"DOC(
      PyramidHash

      NOTE: only support 'float32' data type now.

    )DOC");
  }
};

class PyramidHashOP : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "X(Input) should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true, "W(Input) should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Out(Output) should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("DropPos"), true,
                      "DropPos(TMP Output) should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "The rank of X(Input) should be 2.");

    auto w_dims = ctx->GetInputDim("W");
    PADDLE_ENFORCE_EQ(w_dims.size(), 2, "W should be 2-D tensor");

    int space_len = ctx->Attrs().Get<int>("space_len");
    int rand_len = ctx->Attrs().Get<int>("rand_len");

    PADDLE_ENFORCE_EQ(w_dims[0], space_len + rand_len,
                      "w_dims[0] should be equal to (space_len + rand_len)");
    PADDLE_ENFORCE_EQ(w_dims[1], 1, "w_dims[1] should be equal to 1");

    int num_emb = ctx->Attrs().Get<int>("num_emb");
    PADDLE_ENFORCE_EQ(num_emb % rand_len, 0,
                      "random length should mod embedding size");

    int white_list_len = ctx->Attrs().Get<int>("white_list_len");
    if (white_list_len > 0) {
      PADDLE_ENFORCE_EQ(
          ctx->HasInput("WhiteList"), true,
          "WhiteList(Input) should not be null when white_list_len > 0");
      auto wl_dims = ctx->GetInputDim("WhiteList");
      PADDLE_ENFORCE_EQ(wl_dims.size(), 2, "WhiteList should be 2-D tensor");
      PADDLE_ENFORCE_EQ(wl_dims[0], white_list_len,
                        "wl_dims[0] should be equal to white_list_len");
      PADDLE_ENFORCE_EQ(wl_dims[1], 1, "wl_dims[1] should be equal to 1");
    }

    int black_list_len = ctx->Attrs().Get<int>("black_list_len");
    if (black_list_len > 0) {
      PADDLE_ENFORCE_EQ(
          ctx->HasInput("BlackList"), true,
          "BlackList(Input) should not be null when black_list_len > 0");
      auto bl_dims = ctx->GetInputDim("BlackList");
      PADDLE_ENFORCE_EQ(bl_dims.size(), 2, "BlackList should be 2-D tensor");
      PADDLE_ENFORCE_EQ(bl_dims[0], black_list_len,
                        "bl_dims[0] should be equal to black_list_len");
      PADDLE_ENFORCE_EQ(bl_dims[1], 1, "bl_dims[1] should be equal to 1");
    }

    if (ctx->IsRuntime()) {
      // something to do in runtime.
    } else {
      // compile time
      ctx->SetOutputDim("Out", framework::make_ddim({-1, num_emb}));
      ctx->SetOutputDim("X_Temp_Out", x_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "W"), ctx.GetPlace());
  }
};

template <typename DeviceContext, typename T>
class CPUPyramidHashOPKernel : public framework::OpKernel<T> {
 public:
  bool should_use_term(math::bloomfilter* _filter,
                       math::bloomfilter* _black_filter, const T* word_repr,
                       int len) const {
    return (!_filter ||
            1 == math::bloomfilter_get(_filter, word_repr, len * sizeof(T))) &&
           (!_black_filter ||
            0 == math::bloomfilter_get(_black_filter, word_repr,
                                       len * sizeof(T)));
  }

  void hash_embedding_ff(const T* hash_id, int len, T* top_pos,
                         const T* weights, int _num_emb, int _rand_len,
                         int _space_len) const {
169 170 171
    unsigned int pos1 = XXH32(hash_id, len * sizeof(T), 0) % _space_len;
    unsigned int pos2 = XXH32(hash_id, len * sizeof(T), _rand_len) % _space_len;

172
    for (int j = 0; j != _num_emb; j += _rand_len) {
173 174 175
      if (j + _rand_len < _num_emb) {
        __builtin_prefetch(weights + pos2);
        __builtin_prefetch(top_pos + j + _rand_len);
176
      }
177 178 179 180 181 182 183

      unsigned int pos3 =
          XXH32(hash_id, len * sizeof(T), j + 2 * _rand_len) % _space_len;
      memcpy(top_pos + j, const_cast<float*>(weights + pos1),
             _rand_len * sizeof(T));
      pos1 = pos2;
      pos2 = pos3;
A
Aurelius84 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* bottom = ctx.Input<LoDTensor>("X");
    auto* _blobs_0 = ctx.Input<Tensor>("W");
    auto* _blobs_1 = ctx.Input<Tensor>("WhiteList");
    auto* _blobs_2 = ctx.Input<Tensor>("BlackList");
    auto* top = ctx.Output<LoDTensor>("Out");
    auto* drop_pos = ctx.Output<LoDTensor>("DropPos");

    int _num_emb = ctx.Attr<int>("num_emb");
    bool use_filter = ctx.Attr<bool>("use_filter");
    int white_list_len = ctx.Attr<int>("white_list_len");
    int black_list_len = ctx.Attr<int>("black_list_len");
    int _pyramid_layer = ctx.Attr<int>("pyramid_layer");
    int _is_training = ctx.Attr<int>("is_training");
    int seed = ctx.Attr<int>("seed");
    unsigned int _seed = (unsigned int)seed;
    int _rand_len = ctx.Attr<int>("rand_len");
    int _space_len = ctx.Attr<int>("space_len");
    float _drop_out_percent = ctx.Attr<float>("drop_out_percent");

    const auto& offset = bottom->lod()[0];
    const auto* bottom_data_ori = bottom->data<int32_t>();
    auto* buff = ctx.Output<LoDTensor>("X_Temp_Out");
    buff->Resize(framework::make_ddim({bottom->dims()[0], bottom->dims()[1]}));
    T* bottom_data = buff->mutable_data<T>(ctx.GetPlace());
212
    for (int i = 0; i < bottom->dims()[0]; i++) {
A
Aurelius84 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
      bottom_data[i] = bottom_data_ori[i];
    }

    const auto* weights = _blobs_0->data<T>();

    std::vector<size_t> top_offset;
    top_offset.resize(offset.size());
    top_offset[0] = 0;

    math::bloomfilter* _filter = NULL;
    math::bloomfilter* _black_filter = NULL;
    if (use_filter) {
      if (white_list_len != 0) {
        _filter = (math::bloomfilter*)_blobs_1->data<T>();
        PADDLE_ENFORCE_EQ(math::bloomfilter_check(_filter), 1,
                          "white filter not load");
      }
      if (black_list_len != 0) {
        _black_filter = (math::bloomfilter*)_blobs_2->data<T>();
        PADDLE_ENFORCE_EQ(math::bloomfilter_check(_black_filter), 1,
                          "black filter not load");
      }
    }

    drop_pos->Resize(framework::make_ddim(
        {bottom->dims()[0] * bottom->dims()[1] * _pyramid_layer, 1}));
    std::vector<size_t> drop_pos_offset;
    drop_pos_offset.resize(offset.size());
    drop_pos_offset[0] = 0;
    int* iter = drop_pos->mutable_data<int>(ctx.GetPlace());
    int* iter_end = iter;

245
    for (size_t i = 0; i < top_offset.size() - 1; ++i) {
A
Aurelius84 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
      int w = offset[i + 1] - offset[i];
      int nsentense_with_pyramid = 0;
      if (w < 2) {
        nsentense_with_pyramid = 0;
      } else {
        for (int ilayer = 1; ilayer < _pyramid_layer && ilayer < w; ++ilayer) {
          for (int l = 0; l < w - ilayer; ++l) {
            if (should_use_term(_filter, _black_filter,
                                (const T*)(bottom_data + offset[i] + l),
                                ilayer + 1)) {
              if (_is_training != 0) {
                unsigned int rand_val = rand_r(&_seed);
                T rate = static_cast<T>(rand_val) / (RAND_MAX);
                *(iter_end++) = (rate < _drop_out_percent ? 0 : 1);
              } else {
                *(iter_end++) = 1;
              }
            } else {
              *(iter_end++) = 0;
            }
          }
        }
        nsentense_with_pyramid = std::count(iter, iter_end, 1);
        iter = iter_end;
      }
      drop_pos_offset[i + 1] = drop_pos_offset[i] + nsentense_with_pyramid;
      top_offset[i + 1] =
          top_offset[i] +
          (nsentense_with_pyramid == 0 ? 1 : nsentense_with_pyramid);
    }

    int top_l = top_offset[top_offset.size() - 1];

    framework::LoD top_lod;
    top_lod.push_back(top_offset);
    top->set_lod(top_lod);
    top->Resize(framework::make_ddim({top_l, _num_emb}));
    auto* top_data = top->mutable_data<T>(ctx.GetPlace());

    framework::LoD drop_pos_lod;
    drop_pos_lod.push_back(drop_pos_offset);
    drop_pos->set_lod(drop_pos_lod);

    iter = drop_pos->mutable_data<int>(ctx.GetPlace());
    int top_counter = 0;
291
    for (size_t i = 0; i < offset.size() - 1; ++i) {
A
Aurelius84 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
      int w_drop = drop_pos_offset[i + 1] - drop_pos_offset[i];
      int w = offset[i + 1] - offset[i];
      if (w_drop == 0) {
        if (w >= 2) {
          for (int ilayer = 1; ilayer < _pyramid_layer && ilayer < w;
               ++ilayer) {
            for (int l = 0; l < w - ilayer; ++l) {
              iter++;
            }
          }
        }
        auto* top_pos = top_data + top_counter++ * _num_emb;
        memset(top_pos, 0, _num_emb * sizeof(T));
        continue;
      }
      if (w >= 2) {
        for (int ilayer = 1; ilayer < _pyramid_layer && ilayer < w; ++ilayer) {
          for (int l = 0; l < w - ilayer; ++l) {
            if (*(iter++) == 0) {
              // do nothing
            } else {
              auto* top_pos = top_data + top_counter++ * _num_emb;
              hash_embedding_ff((const T*)(bottom_data + offset[i] + l),
                                ilayer + 1, top_pos, weights, _num_emb,
                                _rand_len, _space_len);
            }
          }
        }
      }
    }
    if (iter != iter_end) {
      exit(1);
    }
    if (_is_training == 0) {
      avx_axpy_noadd(top_data, top_data, top->dims()[0] * top->dims()[1],
                     _drop_out_percent);
    }
  }
};

class PyramidHashOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true, "Input(W) should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("DropPos"), true,
                      "Input(DropPos) should not be null.");
341 342
    PADDLE_ENFORCE_EQ(ctx->HasInput("X_Temp_Out"), true,
                      "Input(X_Temp_Out) should not be null.");
A
Aurelius84 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        "Input(Out@GRAD) of PyramidHashGradOp should not be null.");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "W"), ctx.GetPlace());
  }
};

H
hong 已提交
356 357
template <typename T>
class PyramidHashGradOpMaker : public framework::SingleGradOpMaker<T> {
A
Aurelius84 已提交
358
 public:
H
hong 已提交
359
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
A
Aurelius84 已提交
360 361

 protected:
362
  void Apply(GradOpPtr<T> op_desc_ptr) const override {
A
Aurelius84 已提交
363
    op_desc_ptr->SetType("pyramid_hash_grad");
H
hong 已提交
364 365 366
    op_desc_ptr->SetInput("X", this->Input("X"));
    op_desc_ptr->SetInput("W", this->Input("W"));
    op_desc_ptr->SetInput("DropPos", this->Output("DropPos"));
367
    op_desc_ptr->SetInput("X_Temp_Out", this->Output("X_Temp_Out"));
H
hong 已提交
368 369 370 371 372

    op_desc_ptr->SetInput(framework::GradVarName("Out"),
                          this->OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op_desc_ptr->SetAttrMap(this->Attrs());
A
Aurelius84 已提交
373 374 375 376 377 378 379 380 381
  }
};

template <typename DeviceContext, typename T>
class CPUPyramidHashOPGradKernel : public framework::OpKernel<T> {
 public:
  void hash_embedding_bp(const T* hash_id, int len, const T* top_pos,
                         T* weights, T mlr, int _num_emb, int _rand_len,
                         int _space_len) const {
382
    for (int j = 0; j != _num_emb; j += _rand_len) {
A
Aurelius84 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
      unsigned int pos = XXH32(hash_id, len * sizeof(T), j) % _space_len;
      avx_axpy(top_pos + j, weights + pos, _rand_len, mlr);
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* bottom = ctx.Input<LoDTensor>("X");
    auto* _blobs = ctx.Input<Tensor>("W");
    auto* drop_pos = ctx.Input<LoDTensor>("DropPos");
    auto* top = ctx.Input<LoDTensor>(framework::GradVarName("Out"));

    int _num_emb = ctx.Attr<int>("num_emb");
    float _lr = ctx.Attr<float>("lr");
    int _rand_len = ctx.Attr<int>("rand_len");
    int _space_len = ctx.Attr<int>("space_len");
    int _pyramid_layer = ctx.Attr<int>("pyramid_layer");

400 401
    auto* buff = ctx.Input<LoDTensor>("X_Temp_Out");
    auto* bottom_data = buff->data<T>();
A
Aurelius84 已提交
402 403

    int _slot_len = bottom->dims()[0];
404
    if (static_cast<size_t>(_slot_len) == bottom->lod()[0].size() - 1 &&
A
Aurelius84 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417
        std::count(bottom_data, bottom_data + _slot_len, -1) == _slot_len) {
      return;
    }

    auto& offset = bottom->lod()[0];
    auto& drop_pos_offset = drop_pos->lod()[0];

    const auto* top_diff = top->data<T>();
    T* weights = const_cast<T*>(_blobs->data<T>());
    T mlr = -1.0 * _lr;

    const int* iter = drop_pos->data<int>();
    int top_counter = 0;
418
    for (size_t i = 0; i < offset.size() - 1; ++i) {
A
Aurelius84 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
      int w = offset[i + 1] - offset[i];
      int w_drop = drop_pos_offset[i + 1] - drop_pos_offset[i];
      if (w_drop == 0) {
        top_counter++;
      }
      if (w > 1) {
        for (int ilayer = 1; ilayer < _pyramid_layer && ilayer < w; ++ilayer) {
          for (int l = 0; l < w - ilayer; ++l) {
            if (*(iter++) == 0) {
              // do nothing
            } else {
              const T* top_pos = top_diff + top_counter++ * _num_emb;
              hash_embedding_bp((const T*)(bottom_data + offset[i] + l),
                                ilayer + 1, top_pos, weights, mlr, _num_emb,
                                _rand_len, _space_len);
            }
          }
        }
      } else {
        // do nothing
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plt = paddle::platform;
namespace frm = paddle::framework;
REGISTER_OPERATOR(pyramid_hash, ops::PyramidHashOP, ops::PyramidHashOpMaker,
H
hong 已提交
451 452
                  ops::PyramidHashGradOpMaker<paddle::framework::OpDesc>,
                  ops::PyramidHashGradOpMaker<paddle::imperative::OpBase>);
A
Aurelius84 已提交
453 454 455 456 457 458 459
REGISTER_OPERATOR(pyramid_hash_grad, ops::PyramidHashOpGrad);

REGISTER_OP_CPU_KERNEL(
    pyramid_hash, ops::CPUPyramidHashOPKernel<plt::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    pyramid_hash_grad,
    ops::CPUPyramidHashOPGradKernel<plt::CPUDeviceContext, float>);