sgd_op.h 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
19
#include "paddle/fluid/operators/jit/kernels.h"
Q
Qiao Longfei 已提交
20 21 22 23

namespace paddle {
namespace operators {

C
chengduoZH 已提交
24
template <typename T>
Y
Yu Yang 已提交
25
class SGDOpKernel : public framework::OpKernel<T> {
26
 public:
27 28 29 30 31 32 33 34 35 36 37 38
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");

    const auto *param_var = ctx.InputVar("Param");
    const auto *grad_var = ctx.InputVar("Grad");

    if (param_var->IsType<framework::LoDTensor>()) {
      const auto *param = ctx.Input<framework::Tensor>("Param");
      auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
      // Actually, all tensors are LoDTensor except SelectedRows.
      if (grad_var->IsType<framework::LoDTensor>()) {
        const auto *grad = ctx.Input<framework::Tensor>("Grad");
39 40 41 42 43 44 45 46 47 48 49 50 51 52
        auto sz = param_out->numel();
        PADDLE_ENFORCE_EQ(param->numel(), sz);
        PADDLE_ENFORCE_EQ(grad->numel(), sz);

        jit::sgd_attr_t attr(1, sz, 1, sz, 1);
        const T *lr = learning_rate->data<T>();
        const T *param_data = param->data<T>();
        const T *grad_data = grad->data<T>();
        int64_t rows_idx = 0;
        T *out_data = param_out->mutable_data<T>(ctx.GetPlace());

        auto sgd =
            jit::Get<jit::kSgd, jit::SgdTuples<T>, platform::CPUPlace>(attr);
        sgd(lr, param_data, grad_data, &rows_idx, out_data, &attr);
53 54 55 56 57 58
      } else if (grad_var->IsType<framework::SelectedRows>()) {
        // TODO(qijun): In Sparse SGD operator, in-place update is enforced.
        // This manual optimization brings difficulty to track data dependency.
        // It's better to find a more elegant solution.
        PADDLE_ENFORCE_EQ(param, param_out);
        const auto *grad = ctx.Input<framework::SelectedRows>("Grad");
59
        auto &grad_rows = grad->rows();
60 61 62

        // for distributed training, a sparse var may be empty,
        // just skip updating.
63
        if (grad_rows.size() == 0) {
64 65 66 67
          return;
        }

        auto out_dims = param_out->dims();
68
        PADDLE_ENFORCE_EQ(grad->height(), out_dims[0]);
69
        auto &grad_value = grad->value();
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        const T *param_data = param->data<T>();
        const T *grad_data = grad_value.data<T>();
        const T *lr = learning_rate->data<T>();
        const int64_t *rows_data = grad_rows.data();
        T *out_data = param_out->mutable_data<T>(ctx.GetPlace());

        jit::sgd_attr_t attr;
        attr.param_height = out_dims[0];
        attr.param_width = param_out->numel() / attr.param_height;
        attr.grad_height = grad_rows.size();  // note: it is not grad->height()
        attr.grad_width = grad_value.numel() / attr.grad_height;
        attr.selected_rows_size = grad_rows.size();
        PADDLE_ENFORCE_EQ(attr.grad_width, attr.param_width);

        auto sgd =
            jit::Get<jit::kSgd, jit::SgdTuples<T>, platform::CPUPlace>(attr);
        sgd(lr, param_data, grad_data, rows_data, out_data, &attr);
87 88 89 90 91 92 93 94 95 96
      } else {
        PADDLE_THROW("Unsupported Variable Type of Grad");
      }
    } else if (param_var->IsType<framework::SelectedRows>()) {
      PADDLE_ENFORCE(grad_var->IsType<framework::SelectedRows>(),
                     "when param "
                     "is SelectedRows, gradient should also be SelectedRows");
      const auto &param = param_var->Get<framework::SelectedRows>();
      auto *param_out = ctx.Output<framework::SelectedRows>("ParamOut");
      const auto &grad = grad_var->Get<framework::SelectedRows>();
C
chengduoZH 已提交
97

98 99
      // for distributed training, a sparse var may be empty,
      // just skip updating.
100
      if (grad.rows().size() == 0) {
101 102 103
        return;
      }

Q
qiaolongfei 已提交
104 105
      auto param_row_width = param.value().dims()[1];
      auto grad_row_width = grad.value().dims()[1];
M
minqiyang 已提交
106 107 108 109
      VLOG(4) << " param rows: " << param.rows().size()
              << " param memory rows: " << param.value().dims()[0]
              << " grad rows: " << grad.rows().size()
              << " grad memory rows: " << grad.value().dims()[0];
110 111
      PADDLE_ENFORCE_EQ(param_row_width, grad_row_width,
                        "param_row should have the same size with grad_row");
C
chengduoZH 已提交
112

113 114 115 116
      const auto *lr = learning_rate->data<T>();
      const auto *grad_data = grad.value().data<T>();
      auto *out_data = param_out->mutable_value()->data<T>();
      for (size_t i = 0; i < grad.rows().size(); i++) {
117
        int64_t id_index = param_out->AutoGrownIndex(grad.rows()[i], false);
Y
update  
Yancey1989 已提交
118 119
        PADDLE_ENFORCE_GE(id_index, static_cast<int64_t>(0),
                          "id should be in the table");
120
        for (int64_t j = 0; j < grad_row_width; j++) {
121 122
          out_data[id_index * grad_row_width + j] -=
              lr[0] * grad_data[i * grad_row_width + j];
C
chengduoZH 已提交
123 124
        }
      }
Q
qijun 已提交
125
    } else {
126
      PADDLE_THROW("Unsupported Variable Type of Parameter");
Q
qijun 已提交
127
    }
Q
Qiao Longfei 已提交
128 129 130 131
  }
};
}  // namespace operators
}  // namespace paddle