prior_box_op.h 7.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <algorithm>
#include <vector>
Y
Yi Wang 已提交
18 19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/transform.h"
W
wanghaox 已提交
21 22 23 24

namespace paddle {
namespace operators {

W
wanghaox 已提交
25 26
inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
                               bool flip,
27
                               std::vector<float>* output_aspect_ratior) {
28
  constexpr float epsilon = 1e-6;
29 30
  output_aspect_ratior->clear();
  output_aspect_ratior->push_back(1.0f);
W
wanghaox 已提交
31 32 33
  for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
    float ar = input_aspect_ratior[i];
    bool already_exist = false;
34 35
    for (size_t j = 0; j < output_aspect_ratior->size(); ++j) {
      if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) {
W
wanghaox 已提交
36 37 38 39 40
        already_exist = true;
        break;
      }
    }
    if (!already_exist) {
41
      output_aspect_ratior->push_back(ar);
W
wanghaox 已提交
42
      if (flip) {
43
        output_aspect_ratior->push_back(1.0f / ar);
W
wanghaox 已提交
44 45 46 47 48
      }
    }
  }
}

49
template <typename T>
W
wanghaox 已提交
50 51 52 53 54
class PriorBoxOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<paddle::framework::Tensor>("Input");
    auto* image = ctx.Input<paddle::framework::Tensor>("Image");
W
wanghaox 已提交
55 56
    auto* boxes = ctx.Output<paddle::framework::Tensor>("Boxes");
    auto* vars = ctx.Output<paddle::framework::Tensor>("Variances");
W
wanghaox 已提交
57

C
chengduoZH 已提交
58 59
    auto min_sizes = ctx.Attr<std::vector<float>>("min_sizes");
    auto max_sizes = ctx.Attr<std::vector<float>>("max_sizes");
W
wanghaox 已提交
60 61 62 63
    auto input_aspect_ratio = ctx.Attr<std::vector<float>>("aspect_ratios");
    auto variances = ctx.Attr<std::vector<float>>("variances");
    auto flip = ctx.Attr<bool>("flip");
    auto clip = ctx.Attr<bool>("clip");
64 65
    auto min_max_aspect_ratios_order =
        ctx.Attr<bool>("min_max_aspect_ratios_order");
W
wanghaox 已提交
66 67

    std::vector<float> aspect_ratios;
68
    ExpandAspectRatios(input_aspect_ratio, flip, &aspect_ratios);
W
wanghaox 已提交
69

W
wanghaox 已提交
70 71 72
    T step_w = static_cast<T>(ctx.Attr<float>("step_w"));
    T step_h = static_cast<T>(ctx.Attr<float>("step_h"));
    T offset = static_cast<T>(ctx.Attr<float>("offset"));
W
wanghaox 已提交
73

W
wanghaox 已提交
74 75
    auto img_width = image->dims()[3];
    auto img_height = image->dims()[2];
W
wanghaox 已提交
76

W
wanghaox 已提交
77 78
    auto feature_width = input->dims()[3];
    auto feature_height = input->dims()[2];
W
wanghaox 已提交
79

W
wanghaox 已提交
80
    T step_width, step_height;
W
wanghaox 已提交
81
    if (step_w == 0 || step_h == 0) {
W
wanghaox 已提交
82 83
      step_width = static_cast<T>(img_width) / feature_width;
      step_height = static_cast<T>(img_height) / feature_height;
W
wanghaox 已提交
84 85 86 87 88 89 90 91 92 93
    } else {
      step_width = step_w;
      step_height = step_h;
    }

    int num_priors = aspect_ratios.size() * min_sizes.size();
    if (max_sizes.size() > 0) {
      num_priors += max_sizes.size();
    }

W
wanghaox 已提交
94 95
    boxes->mutable_data<T>(ctx.GetPlace());
    vars->mutable_data<T>(ctx.GetPlace());
W
wanghaox 已提交
96

97
    T* b_t = boxes->data<T>();
W
wanghaox 已提交
98 99
    for (int h = 0; h < feature_height; ++h) {
      for (int w = 0; w < feature_width; ++w) {
W
wanghaox 已提交
100 101 102
        T center_x = (w + offset) * step_width;
        T center_y = (h + offset) * step_height;
        T box_width, box_height;
W
wanghaox 已提交
103
        for (size_t s = 0; s < min_sizes.size(); ++s) {
C
chengduoZH 已提交
104
          auto min_size = min_sizes[s];
105 106
          if (min_max_aspect_ratios_order) {
            box_width = box_height = min_size / 2.;
107 108 109 110 111
            b_t[0] = (center_x - box_width) / img_width;
            b_t[1] = (center_y - box_height) / img_height;
            b_t[2] = (center_x + box_width) / img_width;
            b_t[3] = (center_y + box_height) / img_height;
            b_t += 4;
112 113 114 115
            if (max_sizes.size() > 0) {
              auto max_size = max_sizes[s];
              // square prior with size sqrt(minSize * maxSize)
              box_width = box_height = sqrt(min_size * max_size) / 2.;
116 117 118 119 120
              b_t[0] = (center_x - box_width) / img_width;
              b_t[1] = (center_y - box_height) / img_height;
              b_t[2] = (center_x + box_width) / img_width;
              b_t[3] = (center_y + box_height) / img_height;
              b_t += 4;
121 122 123 124 125 126 127 128 129
            }
            // priors with different aspect ratios
            for (size_t r = 0; r < aspect_ratios.size(); ++r) {
              float ar = aspect_ratios[r];
              if (fabs(ar - 1.) < 1e-6) {
                continue;
              }
              box_width = min_size * sqrt(ar) / 2.;
              box_height = min_size / sqrt(ar) / 2.;
130 131 132 133 134
              b_t[0] = (center_x - box_width) / img_width;
              b_t[1] = (center_y - box_height) / img_height;
              b_t[2] = (center_x + box_width) / img_width;
              b_t[3] = (center_y + box_height) / img_height;
              b_t += 4;
135 136 137 138 139 140 141
            }
          } else {
            // priors with different aspect ratios
            for (size_t r = 0; r < aspect_ratios.size(); ++r) {
              float ar = aspect_ratios[r];
              box_width = min_size * sqrt(ar) / 2.;
              box_height = min_size / sqrt(ar) / 2.;
142 143 144 145 146
              b_t[0] = (center_x - box_width) / img_width;
              b_t[1] = (center_y - box_height) / img_height;
              b_t[2] = (center_x + box_width) / img_width;
              b_t[3] = (center_y + box_height) / img_height;
              b_t += 4;
147 148 149 150 151
            }
            if (max_sizes.size() > 0) {
              auto max_size = max_sizes[s];
              // square prior with size sqrt(minSize * maxSize)
              box_width = box_height = sqrt(min_size * max_size) / 2.;
152 153 154 155 156
              b_t[0] = (center_x - box_width) / img_width;
              b_t[1] = (center_y - box_height) / img_height;
              b_t[2] = (center_x + box_width) / img_width;
              b_t[3] = (center_y + box_height) / img_height;
              b_t += 4;
157
            }
W
wanghaox 已提交
158 159 160 161 162 163
          }
        }
      }
    }

    if (clip) {
164 165 166 167
      T* dt = boxes->data<T>();
      std::transform(dt, dt + boxes->numel(), dt, [](T v) -> T {
        return std::min<T>(std::max<T>(v, 0.), 1.);
      });
W
wanghaox 已提交
168
    }
W
wanghaox 已提交
169

W
wanghaox 已提交
170 171 172 173 174
    framework::Tensor var_t;
    var_t.mutable_data<T>(
        framework::make_ddim({1, static_cast<int>(variances.size())}),
        ctx.GetPlace());
    auto var_et = framework::EigenTensor<T, 2>::From(var_t);
175 176 177 178

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
W
wanghaox 已提交
179
    for (size_t i = 0; i < variances.size(); ++i) {
W
wanghaox 已提交
180
      var_et(0, i) = variances[i];
W
wanghaox 已提交
181
    }
W
wanghaox 已提交
182

W
wanghaox 已提交
183
    int box_num = feature_height * feature_width * num_priors;
W
wanghaox 已提交
184 185 186 187 188
    auto var_dim = vars->dims();
    vars->Resize({box_num, static_cast<int>(variances.size())});

    auto e_vars = framework::EigenMatrix<T, Eigen::RowMajor>::From(*vars);

189 190 191 192 193 194 195 196
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
    for (int i = 0; i < box_num; ++i) {
      for (int j = 0; j < variances.size(); ++j) {
        e_vars(i, j) = variances[j];
      }
    }
W
wanghaox 已提交
197
    vars->Resize(var_dim);
W
wanghaox 已提交
198
  }
W
wanghaox 已提交
199
};  // namespace operators
W
wanghaox 已提交
200 201 202

}  // namespace operators
}  // namespace paddle