inplace_op_inference_test.cc 10.5 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <iterator>
#include <string>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/var_type_inference.h"

namespace paddle {
namespace framework {

class NOP : public OperatorBase {
 public:
  NOP(const std::string& type, const VariableNameMap& inputs,
      const VariableNameMap& outputs, const AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 private:
  void RunImpl(const Scope& scope,
               const platform::Place& place) const override {}
};

class SingleOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
    AddOutput("Out", "");
    AddComment("");
  }
};

class SingleGradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("single_op_grad");
    op->SetInput("Out", OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    return std::unique_ptr<OpDesc>(op);
  }
};

class SingleOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {
    ctx->HasInput("X");
    ctx->HasOutput("Out");
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }
};

class SingleGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {
    ctx->HasInput(framework::GradVarName("Out"));
    ctx->HasOutput(framework::GradVarName("X"));
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Out"));
  }
};

class MultiOutOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
    AddInput("Y", "").AsDuplicable();
    AddInput("Z", "").AsDuplicable();
    AddOutput("Out", "");
    AddOutput("YOut", "");
    AddOutput("ZOut", "");
    AddOutput("NotReuseOut", "");
    AddComment("");
  }
};

class MultiOutShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", "Out");
    ctx->ShareDim("Y", "YOut");
    ctx->ShareDim("Z", "ZOut");
  }
};

class MultiGradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("multi_out_grad");
    op->SetInput("X", Input("X"));
    op->SetOutput(framework::GradVarName("Y"), OutputGrad("YOut"));
    op->SetOutput(framework::GradVarName("X"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("Z"), OutputGrad("ZOut"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

class MultiOutGradShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim(framework::GradVarName("Y"),
                      ctx->GetInputDim(framework::GradVarName("YOut")));
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
    ctx->SetOutputDim(framework::GradVarName("Z"),
                      ctx->GetInputDim(framework::GradVarName("ZOut")));
  }
};

class MultiOutInplaceInToOut : public framework::InplaceInToOut {
 public:
  using framework::InplaceInToOut::InplaceInToOut;

 protected:
  std::unordered_map<std::string, std::string> Apply(
      const OpDesc& op_desc, BlockDesc* block) const override {
    return std::unordered_map<std::string, std::string>{
        {"X", "Out"}, {"Y", "YOut"}, {"Z", "ZOut"},
    };
  }
};

class MultiOutGradInplaceInToOut : public framework::InplaceInToOut {
 public:
  using framework::InplaceInToOut::InplaceInToOut;

 protected:
  std::unordered_map<std::string, std::string> Apply(
      const OpDesc& op_desc, BlockDesc* block) const override {
    return std::unordered_map<std::string, std::string>{
        {framework::GradVarName("YOut"), framework::GradVarName("Y")},
        {framework::GradVarName("Out"), framework::GradVarName("X")},
        {framework::GradVarName("ZOut"), framework::GradVarName("Z")},
    };
  }
};

}  // namespace framework
}  // namespace paddle

namespace f = paddle::framework;
REGISTER_OPERATOR(single_op, f::NOP, f::SingleOpMaker, f::SingleGradOpMaker,
                  f::SingleOpInplaceInToOut, f::SingleOpShapeInference);
REGISTER_OPERATOR(single_op_grad, f::NOP, f::SingleOpInplaceInToOut,
                  f::SingleGradOpShapeInference);
REGISTER_OPERATOR(multi_out_op, f::NOP, f::MultiOutOpMaker, f::MultiGradOpMaker,
                  f::MultiOutInplaceInToOut, f::MultiOutShapeInference);
REGISTER_OPERATOR(multi_out_grad, f::NOP, f::MultiOutGradInplaceInToOut,
                  f::MultiOutGradShapeInference);

namespace paddle {
namespace framework {

TEST(InferInplace, SingleOpInplaceInToOut) {
  ProgramDesc prog;
  auto* op = prog.MutableBlock(0)->AppendOp();
  op->SetType("single_op");
  op->SetInput("X", {"test2_a", "test2_b", "test2_c"});
  op->SetOutput("Out", {"test2_out"});

  prog.MutableBlock(0)->Var("test2_a")->SetType(proto::VarType::LOD_TENSOR);
182
  prog.MutableBlock(0)->Var("test2_a")->SetShape({32, 64, 128, 128});
D
dzhwinter 已提交
183 184 185
  prog.MutableBlock(0)->Var("test2_b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("test2_c")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("test2_out");
186
  prog.MutableBlock(0)->Var("test2_out")->SetShape({32, 16, 128, 128});
D
dzhwinter 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

  auto& infer_inplace = OpInfoMap::Instance().Get(op->Type()).infer_inplace_;
  auto in_to_outs = infer_inplace(*op, op->Block());
  EXPECT_EQ(in_to_outs.size(), 1ul);
  auto it = in_to_outs.begin();
  EXPECT_EQ(it->first, "test2_a");
  EXPECT_EQ(it->second, "test2_out");
}

TEST(InferInplace, SingleGradOpInplaceInToOut) {
  ProgramDesc prog;
  auto* op = prog.MutableBlock(0)->AppendOp();
  op->SetType("single_op_grad");
  op->SetInput(GradVarName("Out"), {"test2_out"});
  op->SetOutput(GradVarName("X"), {"test2_a", "test2_b", "test2_c"});

  prog.MutableBlock(0)->Var("test2_a")->SetType(proto::VarType::LOD_TENSOR);
204
  prog.MutableBlock(0)->Var("test2_a")->SetShape({32, 16, 1024, 1024});
D
dzhwinter 已提交
205 206 207
  prog.MutableBlock(0)->Var("test2_b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("test2_c")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("test2_out");
208
  prog.MutableBlock(0)->Var("test2_out")->SetShape({32, 16, 1024, 1024});
D
dzhwinter 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

  auto& infer_inplace = OpInfoMap::Instance().Get(op->Type()).infer_inplace_;
  auto in_to_outs = infer_inplace(*op, op->Block());
  EXPECT_EQ(in_to_outs.size(), 1ul);
  auto it = in_to_outs.begin();
  EXPECT_EQ(it->first, "test2_out");
  EXPECT_EQ(it->second, "test2_a");
}

TEST(InferInplace, MultiOutInplaceInToOut) {
  ProgramDesc prog;
  auto* op = prog.MutableBlock(0)->AppendOp();
  op->SetType("multi_out_op");
  op->SetInput("X", {"a0", "a1"});
  op->SetInput("Y", {"b0"});
  op->SetInput("Z", {"c0", "c1"});
  op->SetOutput("Out", {"o0"});
  op->SetOutput("YOut", {"y0"});
  op->SetOutput("ZOut", {"z0"});

  prog.MutableBlock(0)->Var("a0")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("b0")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c0")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c1")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("o0");
  prog.MutableBlock(0)->Var("y0");
  prog.MutableBlock(0)->Var("z0");
236 237 238 239 240 241
  prog.MutableBlock(0)->Var("a0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("b0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("c0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("o0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("y0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("z0")->SetShape({32, 16, 1024, 1024});
D
dzhwinter 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

  auto& infer_inplace = OpInfoMap::Instance().Get(op->Type()).infer_inplace_;
  auto in_to_outs = infer_inplace(*op, op->Block());
  EXPECT_EQ(in_to_outs.size(), 3ul);
  std::unordered_map<std::string, std::string> expects = {
      {"a0", "o0"}, {"b0", "y0"}, {"c0", "z0"},
  };
  EXPECT_TRUE(expects == in_to_outs);
}

TEST(InferInplace, MultiGradInplaceInToOut) {
  ProgramDesc prog;
  auto* op = prog.MutableBlock(0)->AppendOp();
  op->SetType("multi_out_grad");
  op->SetInput(GradVarName("Out"), {"o0"});
  op->SetInput(GradVarName("YOut"), {"y0"});
  op->SetInput(GradVarName("ZOut"), {"z0"});
  op->SetOutput(GradVarName("X"), {"a0", "a1"});
  op->SetOutput(GradVarName("Y"), {"b0"});
  op->SetOutput(GradVarName("Z"), {"c0", "c1"});

  prog.MutableBlock(0)->Var("a0")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("b0")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c0")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c1")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("o0");
  prog.MutableBlock(0)->Var("y0");
  prog.MutableBlock(0)->Var("z0");
270 271 272 273 274 275
  prog.MutableBlock(0)->Var("a0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("b0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("c0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("o0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("y0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("z0")->SetShape({32, 16, 1024, 1024});
D
dzhwinter 已提交
276 277 278

  auto& infer_inplace = OpInfoMap::Instance().Get(op->Type()).infer_inplace_;
  auto in_to_outs = infer_inplace(*op, op->Block());
D
dzhwinter 已提交
279

D
dzhwinter 已提交
280 281 282 283 284 285 286 287 288
  EXPECT_EQ(in_to_outs.size(), 3ul);
  std::unordered_map<std::string, std::string> expects = {
      {"o0", "a0"}, {"y0", "b0"}, {"z0", "c0"},
  };
  EXPECT_TRUE(expects == in_to_outs);
}

}  // namespace framework
}  // namespace paddle