mlir_to_runtime_translate_test.cc 5.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/host_context/mlir_to_runtime_translate.h"

#include <gtest/gtest.h>
#include <llvm/Support/FormatVariadic.h>

#include "paddle/infrt/common/global.h"
#include "paddle/infrt/dialect/mlir_loader.h"
#include "paddle/infrt/host_context/core_runtime.h"
#include "paddle/infrt/host_context/kernel_registry.h"
#include "paddle/infrt/host_context/kernel_utils.h"
#include "paddle/infrt/host_context/mlir_program_executor.h"
#include "paddle/infrt/kernel/basic_kernels.h"
#include "paddle/infrt/kernel/control_flow_kernels.h"
#include "paddle/infrt/kernel/tensor_kernels.h"
#include "paddle/infrt/kernel/tensor_shape_kernels.h"
#include "paddle/infrt/kernel/test_kernels.h"

32 33
namespace infrt {
namespace host_context {
Y
Yan Chunwei 已提交
34 35 36 37 38 39

TEST(MlirToRuntimeTranslate, basic) {
  mlir::MLIRContext context;

  auto source = R"ROC(
func @main() -> () {
40 41 42 43
  %v0 = Infrt.constant.f32 1.0
  %v1 = Infrt.constant.f32 2.0
  %v2 = "Infrt.add.f32"(%v0, %v1) : (f32, f32) -> f32
  %v3 = "Infrt.mul.f32"(%v2, %v1) : (f32, f32) -> f32
Y
Yan Chunwei 已提交
44

45
  "Infrt.print.f32"(%v1) : (f32) -> ()
Y
Yan Chunwei 已提交
46

47
  Infrt.return
Y
Yan Chunwei 已提交
48 49 50 51
}
)ROC";

  auto module = dialect::LoadMlirSource(&context, source);
52
  EXPECT_TRUE(mlir::succeeded(module->verify()));
Y
Yan Chunwei 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65

  KernelRegistry registry;
  kernel::RegisterFloatBasicKernels(&registry);
  kernel::RegisterIntBasicKernels(&registry);

  TestMlir(module.get(), &registry);
}

TEST(TestMlir, basic) {
  mlir::MLIRContext context;

  auto source = R"ROC(
func @main() -> () {
66 67 68 69
  %v0 = Infrt.constant.f32 1.0
  %v1 = Infrt.constant.f32 2.0
  %v2 = "Infrt.add.f32"(%v0, %v1) : (f32, f32) -> f32
  %v3 = "Infrt.mul.f32"(%v2, %v1) : (f32, f32) -> f32
Y
Yan Chunwei 已提交
70

71
  "Infrt.print.f32"(%v1) : (f32) -> ()
Y
Yan Chunwei 已提交
72

73
  Infrt.return
Y
Yan Chunwei 已提交
74 75 76 77
}
)ROC";

  auto module = dialect::LoadMlirSource(&context, source);
78
  EXPECT_TRUE(mlir::succeeded(module->verify()));
Y
Yan Chunwei 已提交
79 80 81 82 83 84 85 86 87 88 89 90

  KernelRegistry registry;
  kernel::RegisterFloatBasicKernels(&registry);
  kernel::RegisterIntBasicKernels(&registry);

  TestMlir(module.get(), &registry);
}

TEST(TestMlir, shadow_copy_tensor_profile) {
  mlir::MLIRContext* context = infrt::Global::getMLIRContext();

  auto head = R"ROC(
91
func @predict(%a: !infrt.dense_tensor<CPU, FP32, NCHW>, %b: !infrt.dense_tensor<CPU, FP32, NCHW>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) {
Y
Yan Chunwei 已提交
92 93 94
)ROC";

  auto tpl0 =
95 96 97
      "%a{0} = dt.shallow_copy_tensor %a : !infrt.dense_tensor<CPU, FP32, "
      "NCHW> -> "
      "!infrt.dense_tensor<CPU, FP32, NCHW>";
Y
Yan Chunwei 已提交
98
  auto tpl1 =
99 100 101
      "%b{0} = dt.shallow_copy_tensor %b : !infrt.dense_tensor<CPU, FP32, "
      "NCHW> -> "
      "!infrt.dense_tensor<CPU, FP32, NCHW>";
Y
Yan Chunwei 已提交
102 103

  auto end = R"ROC(
104
Infrt.return %a0, %b0: !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>
Y
Yan Chunwei 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
}
  )ROC";

  std::stringstream ss;
  ss << head;
  for (int i = 0; i < 2000; i++) {
    ss << llvm::formatv(tpl0, i).str() << "\n";
    ss << llvm::formatv(tpl1, i).str() << "\n";
  }
  ss << end;

  auto content = ss.str();

  // LOG(INFO) << "content: " << content << std::endl;

  auto module = dialect::LoadMlirSource(context, content);
121
  EXPECT_TRUE(mlir::succeeded(module->verify()));
Y
Yan Chunwei 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

  host_context::KernelRegistry registry;

  kernel::RegisterBasicKernels(&registry);
  kernel::RegisterTestKernels(&registry);
  kernel::RegisterTensorShapeKernels(&registry);
  kernel::RegisterTensorKernels(&registry);
  kernel::RegisterControlFlowKernels(&registry);

  MlirProgramExecutor executor(*module, &registry);
  executor.BuildFunctions();

  auto* func = executor.LookupFunc("predict");
  ASSERT_TRUE(func);

  std::vector<Value*> in_args;
  std::vector<ValueRef> out_args(
      {ValueRef(new Value(tensor::DenseHostTensor())),
       ValueRef(new Value(tensor::DenseHostTensor()))});

  auto create_tensor = [] {
    tensor::DenseHostTensor a(tensor::TensorShape{{200, 3000}},
                              DType(DType::Kind::F32));
    auto* data = reinterpret_cast<float*>(a.raw_data());
    for (int i = 0; i < a.shape().GetNumElements(); i++) {
      data[i] = i;
    }
    return a;
  };

  std::vector<ValueRef> inputs({ValueRef(new Value(create_tensor())),
                                ValueRef(new Value(create_tensor()))});
  in_args.assign({inputs[0].get(), inputs[1].get()});

  for (int i = 0; i < 500; i++) {
    func->Execute(
        llvm::ArrayRef<Value*>(in_args.data(), in_args.size()),
        llvm::MutableArrayRef<ValueRef>(out_args.data(), out_args.size()));
  }
}

163 164
}  // namespace host_context
}  // namespace infrt