test_sequence_expand.py 3.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghaoshuang 已提交
15 16 17 18 19
import unittest
import numpy as np
from op_test import OpTest


W
wanghaoshuang 已提交
20
class TestSequenceExpand(OpTest):
W
wanghaoshuang 已提交
21
    def set_data(self):
W
wanghaoshuang 已提交
22 23 24 25
        x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
        y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
        y_lod = [[0, 1, 4, 8]]
        self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
W
wanghaoshuang 已提交
26 27

    def compute(self):
W
wanghaoshuang 已提交
28 29
        x = self.inputs['X']
        x_data, x_lod = x if type(x) == tuple else (x, None)
W
wanghaoshuang 已提交
30
        n = 1 + x_data.shape[0] if not x_lod else len(x_lod[0])
W
wanghaoshuang 已提交
31 32 33 34
        y_data, y_lod = self.inputs['Y']
        repeats = [((y_lod[-1][i + 1] - y_lod[-1][i]))
                   for i in range(len(y_lod[-1]) - 1)]
        out = x_data.repeat(repeats, axis=0)
W
wanghaoshuang 已提交
35
        self.outputs = {'Out': out}
W
wanghaoshuang 已提交
36 37

    def setUp(self):
W
wanghaoshuang 已提交
38
        self.op_type = 'sequence_expand'
W
wanghaoshuang 已提交
39 40 41 42 43 44
        self.set_data()
        self.compute()

    def test_check_output(self):
        self.check_output()

W
wanghaoshuang 已提交
45 46
    def test_check_grad(self):
        self.check_grad(["X"], "Out")
W
wanghaoshuang 已提交
47 48


W
wanghaoshuang 已提交
49
class TestSequenceExpandCase1(TestSequenceExpand):
W
wanghaoshuang 已提交
50 51 52 53
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
        x_lod = [[0, 2, 5]]
        y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32')
W
wanghaoshuang 已提交
54
        y_lod = [[0, 2, 5], [0, 2, 4, 7, 10, 13]]
W
wanghaoshuang 已提交
55
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
W
wanghaoshuang 已提交
56 57


W
wanghaoshuang 已提交
58
class TestSequenceExpandCase2(TestSequenceExpand):
W
wanghaoshuang 已提交
59 60 61 62 63 64
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32')
        x_lod = [[0, 1]]
        y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32')
        y_lod = [[0, 2]]
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
W
wanghaoshuang 已提交
65 66


W
wanghaoshuang 已提交
67
class TestSequenceExpandCase3(TestSequenceExpand):
W
wanghaoshuang 已提交
68 69 70 71 72 73 74 75
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
        x_lod = [[0, 1, 2, 3, 4]]
        y_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32')
        y_lod = [[0, 2, 4, 4, 6]]
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
class TestSequenceExpandCase4(TestSequenceExpand):
    def set_data(self):
        x_data = np.array(
            [0.1, 0.3, 0.2, 0.15, 0.25, 0.2, 0.15, 0.25, 0.1, 0.3]).reshape(
                [2, 5]).astype('float32')
        x_lod = [[
            0,
            1,
            2,
        ]]
        y_data = np.random.uniform(0.1, 1, [2, 1]).astype('float32')
        y_lod = [[0, 1, 2], [0, 1, 2]]
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}


W
wanghaoshuang 已提交
91 92
if __name__ == '__main__':
    unittest.main()