elementwise_add_op.h 2.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

17
#include "paddle/fluid/framework/eigen.h"
Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/elementwise_op_function.h"
19
#include "paddle/fluid/operators/math/blas.h"
G
gongweibao 已提交
20 21 22 23

namespace paddle {
namespace operators {

C
chengduoZH 已提交
24 25
template <typename T>
struct AddFunctor {
C
chengduoZH 已提交
26
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
C
chengduoZH 已提交
27 28
};

Q
QI JUN 已提交
29
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
30
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
31 32
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
33 34
    using Tensor = framework::Tensor;

35 36 37
    const auto x = ctx.Input<Tensor>("X");
    const auto y = ctx.Input<Tensor>("Y");
    auto z = ctx.Output<Tensor>("Out");
C
chengduoZH 已提交
38 39
    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
40 41 42 43 44 45 46 47 48 49 50 51 52

    auto dims_equal = x->dims() == y->dims();
    if (platform::is_cpu_place(ctx.GetPlace()) && dims_equal) {
      auto eigen_x = framework::EigenVector<T>::Flatten(*x);
      auto eigen_y = framework::EigenVector<T>::Flatten(*y);
      auto eigen_z = framework::EigenVector<T>::Flatten(*z);

      auto blas = math::GetBlas<DeviceContext, T>(ctx);
      blas.VADD(x->numel(), eigen_x.data(), eigen_y.data(), eigen_z.data());
    } else {
      ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                            AddFunctor<T>(), z);
    }
G
gongweibao 已提交
53 54 55 56
  }
};

template <typename T>
Y
Yu Yang 已提交
57 58
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
59 60
};

Q
QI JUN 已提交
61
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
62
class ElementwiseAddGradKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
63 64
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
65 66 67 68 69 70 71 72 73
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
Y
Yu Yang 已提交
74 75 76
    ElemwiseGradCompute<DeviceContext, T, IdentityGrad<T>, IdentityGrad<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, IdentityGrad<T>(),
        IdentityGrad<T>());
G
gongweibao 已提交
77 78 79 80 81
  }
};

}  // namespace operators
}  // namespace paddle