graph_wrapper.py 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict
from .... import io
from .... import compiler
from ....framework import Program
from ....framework import program_guard
from ....framework import Parameter
from ....framework import Variable
from ....executor import Executor
import copy
from collections import Iterable
from ....io import save_inference_model, load_inference_model, save_persistables
import numpy as np
import pickle
import os

__all__ = ['GraphWrapper', 'VarWrapper', 'OpWrapper']

OPTIMIZER_OPS = [
    'momentum',
    'lars_momentum',
    'adagrad',
    'adam',
    'adamax',
    'decayed_adagrad',
    'adadelta',
    'rmsprop',
]


class VarWrapper(object):
    def __init__(self, var, graph):
        assert isinstance(var, Variable)
        assert isinstance(graph, GraphWrapper)
        self._var = var
        self._graph = graph

    def __eq__(self, v):
        """
        Overwrite this function for ...in... syntax in python.
        """
        return self._var.name == v._var.name

    def name(self):
        """
        Get the name of the variable.
        """
        return self._var.name

    def shape(self):
        """
        Get the shape of the varibale.
        """
        return self._var.shape

    def set_shape(self, shape):
        """
        Set the shape of the variable.
        """
        self._var.desc.set_shape(shape)

    def inputs(self):
        """
        Get all the operators that use this variable as output.
        Returns:
            list<OpWrapper>: A list of operators.
        """
        ops = []
        for op in self._graph.ops():
            if self in op.all_inputs():
                ops.append(op)
        return ops

    def outputs(self):
        """
        Get all the operators that use this variable as input.
        Returns:
            list<OpWrapper>: A list of operators.
        """
        ops = []
        for op in self._graph.ops():
            if self in op.all_outputs():
                ops.append(op)
        return ops


class OpWrapper(object):
    def __init__(self, op, graph):
        assert isinstance(graph, GraphWrapper)
        self._op = op
        self._graph = graph

    def __eq__(self, op):
        """
        Overwrite this function for ...in... syntax in python.
        """
        return self.idx() == op.idx()

    def all_inputs(self):
        """
        Get all the input variables of this operator.
        """
        return [
            self._graph.var(var_name) for var_name in self._op.input_arg_names
        ]

    def all_outputs(self):
        """
        Get all the output variables of this operator.
        """
        return [
            self._graph.var(var_name) for var_name in self._op.output_arg_names
        ]

    def idx(self):
        """
        Get the id of this operator.
        """
        return self._op.idx

    def type(self):
        """
        Get the type of this operator.
        """
        return self._op.type

    def is_bwd_op(self):
        """
        Whether this operator is backward op.
        """
        return self.type().endswith('_grad')

    def is_opt_op(self):
        """
        Whether this operator is optimizer op.
        """
        return self.type() in OPTIMIZER_OPS

    def inputs(self, name):
        """
        Get all the varibales by the input name.
        """
        return [self._graph.var(var_name) for var_name in self._op.input(name)]

    def outputs(self, name):
        """
        Get all the varibales by the output name.
        """
        return [self._graph.var(var_name) for var_name in self._op.output(name)]

    def set_attr(self, key, value):
        """
        Set the value of attribute by attribute's name.

        Args:
            key(str): the attribute name.
            value(bool|int|str|float|list): the value of the attribute.
        """
        self._op._set_attr(key, value)

    def attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            bool|int|str|float|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self._op.attr(name)


class GraphWrapper(object):
    """
    It is a wrapper of paddle.fluid.framework.IrGraph with some special functions
    for paddle slim framework.
    """

    def __init__(self, program=None, in_nodes=[], out_nodes=[]):
        """
        Args:
            program(framework.Program): A program with 
            in_nodes(dict): A dict to indicate the input nodes of the graph.
                            The key is user-defined and human-readable name.
                            The value is the name of Variable.
            out_nodes(dict): A dict to indicate the input nodes of the graph.
                            The key is user-defined and human-readable name.
                            The value is the name of Variable.
        """
        super(GraphWrapper, self).__init__()
        self.program = Program() if program is None else program
        self.compiled_graph = None
        self.in_nodes = OrderedDict(in_nodes)
        self.out_nodes = OrderedDict(out_nodes)
        self._attrs = OrderedDict()

    def all_parameters(self):
        """
        Get all the parameters in this graph.
        Returns:
            list<VarWrapper>: A list of VarWrapper instances.
        """
        params = []
        for block in self.program.blocks:
            for param in block.all_parameters():
                params.append(VarWrapper(param, self))
        return params

    def is_parameter(self, var):
        """
        Whether the given variable is parameter.
        Args:
            var(VarWrapper): The given varibale.
        """
        return isinstance(var._var, Parameter)

    def is_persistable(self, var):
        """
        Whether the given variable is persistable.
        Args:
            var(VarWrapper): The given varibale.
        """
        return var._var.persistable

    def compile(self, for_parallel=True, for_test=False):
        """
        Compile the program in this wrapper to framework.CompiledProgram for next running.
        This function must be called if the program is modified.
        Args:
            for_parallel(bool): Whether the program to run in data parallel way. default: True.
            for_test(bool): Whether the compiled program is used for test.
        """
        target = self.program
        if for_test:
            loss = None
        else:
            loss = self.out_nodes['loss']
        if for_parallel:
            # disable memory optimize for stable training
            build_strategy = compiler.BuildStrategy()
            build_strategy.enable_inplace = False
            build_strategy.memory_optimize = False
            self.compiled_graph = compiler.CompiledProgram(
                target).with_data_parallel(
                    loss_name=loss, build_strategy=build_strategy)
        else:
            self.compiled_graph = compiler.CompiledProgram(target)

    def ops(self):
        """
        Return all operator nodes included in the graph as a set.
        """
        ops = []
        for block in self.program.blocks:
            for op in block.ops:
                ops.append(OpWrapper(op, self))
        return ops

    def vars(self):
        """
        Get all the variables.
        """
        return [VarWrapper(var, self) for var in self.program.list_vars()]

    def var(self, name):
        """
        Get the variable by variable name.
        """
        return VarWrapper(self.program.global_block().var(name), self)

    def clone(self, for_test=False):
        """
        Clone a new graph from current graph.
        Returns:
            (GraphWrapper): The wrapper of a new graph.
        """
        return GraphWrapper(
            self.program.clone(for_test),
            copy.deepcopy(self.in_nodes), copy.deepcopy(self.out_nodes))

    def merge(self, graph):
        """
        Merge a graph into current graph.
        Args:
            graph(GraphWrapper): The graph to be merged by current graph.
        """
        for var in graph.program.list_vars():
303 304 305
            new_var = self.program.global_block()._clone_variable(
                var, force_persistable=False)
            new_var.stop_gradient = var.stop_gradient
306 307 308 309 310 311 312 313
            # TODO: parameters should be cloned
        for op in graph.ops():
            op = op._op
            inputs = {}
            outputs = {}
            attrs = {}
            for input_name in op.input_names:
                inputs[input_name] = [
314 315
                    self.var(in_var_name)._var
                    for in_var_name in op.input(input_name)
316 317 318
                ]
            for output_name in op.output_names:
                outputs[output_name] = [
319
                    self.var(out_var_name)._var
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
                    for out_var_name in op.output(output_name)
                ]
            for attr_name in op.attr_names:
                attrs[attr_name] = op.attr(attr_name)
            self.program.global_block().append_op(
                type=op.type, inputs=inputs, outputs=outputs, attrs=attrs)

    def program(self):
        """
        Get the program in current wrapper.
        """
        return self.program

    def pre_ops(self, op):
        """
        Get all the previous operators of target operator.
        Args:
            op(OpWrapper): Target operator..
        Returns:
            list<OpWrapper>: A list of operators.
        """
        ops = []
        for p in self.ops():
            for in_var in op.all_inputs():
                if in_var in p.all_outputs():
                    ops.append(p)
        return ops

    def next_ops(self, op):
        """
        Get all the next operators of target operator.
        Args:
            op(OpWrapper): Target operator..
        Returns:
            list<OpWrapper>: A list of operators.
        """
        ops = []
        for p in self.ops():
            for out_var in op.all_outputs():
                if out_var in p.all_inputs():
                    ops.append(p)
        return ops

    def get_param_by_op(self, op):
        """
        Get the parameters used by target operator.
        """
        assert isinstance(op, OpWrapper)
        params = []
        for var in op.all_inputs():
            if isinstance(var._var, Parameter):
                params.append(var)
        assert len(params) > 0
        return params

    def numel_params(self):
        """
        Get the number of elements in all parameters.
        """
        ret = 0
        for param in self.all_parameters():
            ret += np.product(param.shape())
        return ret

    def get_optimize_graph(self, optimizer, place, scope, no_grad_var_names=[]):
        """
        Get a new graph for training by appending some backward operators and optimization operators.
        Args:
            optimizer: The optimzier used to generate training graph.
            place: The place to run the graph.
            scope: The scope used to run the graph. Some new variable will be added into this scope.
            no_grad_var_names(list<str>): Names of variables that should be ignored while computing gradients. default: [].
        Returns:
            (GraphWrapper): The wrapper of new graph with backward ops and optimization ops. 
        """
        graph = self.clone()
        startup_program = Program()
        with program_guard(
                main_program=graph.program, startup_program=startup_program):
            target_name = None
            if 'loss' in graph.out_nodes:
                target_name = graph.out_nodes['loss']
            elif 'cost' in graph.out_nodes:
                target_name = graph.out_nodes['cost']
            target = graph.var(target_name)._var
405 406 407 408 409 410
            # The learning rate variable may be created in other program.
            # Update information in optimizer to make
            # learning rate variable being accessible in current program.
            if isinstance(optimizer._learning_rate, Variable):
                optimizer._learning_rate_map[
                    graph.program] = optimizer._learning_rate
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
            optimizer.minimize(target, no_grad_set=no_grad_var_names)

        exe = Executor(place)
        exe.run(program=startup_program, scope=scope)
        return graph

    def flops(self, only_conv=False):
        """
        Get the flops of current graph.
        Args:
            only_conv: Only calculating the conv layers. default: False.
        Returns:
            int: The flops of current graph.
        """
        flops = 0
        for op in self.ops():
            if op.type() in ['conv2d', 'depthwise_conv2d']:
                filter_shape = op.inputs("Filter")[0].shape()
                input_shape = op.inputs("Input")[0].shape()
                output_shape = op.outputs("Output")[0].shape()
                c_out, c_in, k_h, k_w = filter_shape
                _, _, h_out, w_out = output_shape
                groups = op.attr("groups")
                kernel_ops = k_h * k_w * (c_in / groups)
                if len(op.inputs("Bias")) > 0:
                    with_bias = 1
                else:
                    with_bias = 0
                flops += 2 * h_out * w_out * c_out * (kernel_ops + with_bias)
            elif op.type() == 'pool2d' and not only_conv:
                input_shape = op.inputs("X")[0].shape()
                output_shape = op.outputs("Out")[0].shape()
                _, c_out, h_out, w_out = output_shape
                k_size = op.attr("ksize")
                flops += h_out * w_out * c_out * (k_size[0]**2)

            elif op.type() == 'mul' and not only_conv:
                x_shape = list(op.inputs("X")[0].shape())
                y_shape = op.inputs("Y")[0].shape()
                if x_shape[0] == -1:
                    x_shape[0] = 1
                flops += 2 * x_shape[0] * x_shape[1] * y_shape[1]

            elif op.type() in ['relu', 'sigmoid', 'batch_norm'
                               ] and not only_conv:
                input_shape = list(op.inputs("X")[0].shape())
                if input_shape[0] == -1:
                    input_shape[0] = 1
                flops += np.product(input_shape)

        return flops

    def save_persistables(self, path, exe):
        """
        Save all the persistable variables into file.
        Args:
            path(str): The path to save the persistables.
            exe(framework.Executor): The executor used to save the persistables.
        """
        io.save_persistables(exe.exe, path, main_program=self.program)

    def load_persistables(self, path, exe):
        """
        Load the persistable variables from file.
        Args:
            path(str): The path to load the persistables.
            exe(framework.Executor): The executor used to load the persistables.
        """

        def if_exist(var):
            return os.path.exists(os.path.join(path, var.name))

        io.load_vars(
            exe.exe, path, main_program=self.program, predicate=if_exist)

    def update_param_shape(self, scope):
        """
        Update the shape of parameters in the graph according to tensors in scope.
        It is used after loading pruned parameters from file.
        """
        for param in self.all_parameters():
            tensor_shape = np.array(scope.find_var(param.name()).get_tensor(
            )).shape
            param.set_shape(tensor_shape)

    def infer_shape(self):
        """
        Update the groups of convolution layer according to current filters.
        It is used after loading pruned parameters from file.
        """
        for op in self.ops():
            if op.type() != 'conditional_block':
                op._op.desc.infer_shape(op._op.block.desc)

    def update_groups_of_conv(self):
        for op in self.ops():
            if op.type() == 'depthwise_conv2d':
                op.set_attr('groups', op.inputs('Filter')[0].shape()[0])