test_kldiv_loss_op.py 3.3 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
D
dengkaipeng 已提交
9
# Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS,
D
dengkaipeng 已提交
10 11 12 13 14 15
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

16
import paddle
D
dengkaipeng 已提交
17 18 19 20 21 22 23
import unittest
import numpy as np
from op_test import OpTest


def kldiv_loss(x, target, reduction):
    output = target * (np.log(target) - x)
D
dengkaipeng 已提交
24
    loss = np.where(target >= 0, output, np.zeros_like(x))
D
dengkaipeng 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

    if reduction == "batchmean":
        return loss.sum() / x.shape[0]
    if reduction == "mean":
        return loss.mean()
    if reduction == "sum":
        return loss.sum()

    return loss


class TestKLDivLossOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'kldiv_loss'
40 41
        x = np.random.uniform(-10, 10, self.x_shape).astype('float64')
        target = np.random.uniform(-10, 10, self.x_shape).astype('float64')
D
dengkaipeng 已提交
42 43 44 45 46 47 48 49

        self.attrs = {"reduction": self.reduction}

        self.inputs = {
            'X': x,
            'Target': target,
        }
        loss = kldiv_loss(x, target, self.reduction)
50
        self.outputs = {'Loss': loss.astype('float64')}
D
dengkaipeng 已提交
51 52 53 54 55

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
56
        self.check_grad(['X'], 'Loss', no_grad_set=set(["Target"]))
D
dengkaipeng 已提交
57

D
dengkaipeng 已提交
58
    def initTestCase(self):
59
        self.x_shape = (4, 5, 5)
D
dengkaipeng 已提交
60
        self.reduction = 'batchmean'
D
dengkaipeng 已提交
61 62 63


class TestKLDivLossOp2(TestKLDivLossOp):
D
dengkaipeng 已提交
64
    def initTestCase(self):
D
dengkaipeng 已提交
65 66
        self.x_shape = (3, 2, 7, 7)
        self.reduction = 'none'
D
dengkaipeng 已提交
67 68


D
dengkaipeng 已提交
69 70 71 72 73 74 75 76
class TestKLDivLossOp3(TestKLDivLossOp):
    def initTestCase(self):
        self.x_shape = (2, 3, 5, 7, 9)
        self.reduction = 'mean'


class TestKLDivLossOp4(TestKLDivLossOp):
    def initTestCase(self):
Z
zhupengyang 已提交
77
        self.x_shape = (5, 20)
D
dengkaipeng 已提交
78 79
        self.reduction = 'sum'

D
dengkaipeng 已提交
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
class TestKLDivLossDygraph(unittest.TestCase):
    def run_kl_loss(self, reduction, shape=(5, 20)):
        x = np.random.uniform(-10, 10, shape).astype('float64')
        target = np.random.uniform(-10, 10, shape).astype('float64')
        gt_loss = kldiv_loss(x, target, reduction)

        with paddle.fluid.dygraph.guard():
            kldiv_criterion = paddle.nn.KLDivLoss(reduction)
            pred_loss = kldiv_criterion(
                paddle.to_variable(x), paddle.to_variable(target))
            self.assertTrue(np.allclose(pred_loss.numpy(), gt_loss))

    def test_kl_loss_batchmean(self):
        self.run_kl_loss('batchmean')

    def test_kl_loss_mean(self):
        self.run_kl_loss('mean')

    def test_kl_loss_sum(self):
        self.run_kl_loss('sum')

    def test_kl_loss_none(self):
        self.run_kl_loss('none')

    def test_kl_loss_static_api(self):
        input = paddle.fluid.data(name='input', shape=[5, 20])
        label = paddle.fluid.data(name='label', shape=[5, 20])

        pred_loss = paddle.nn.functional.kl_div(input, label)


D
dengkaipeng 已提交
112 113
if __name__ == "__main__":
    unittest.main()