quantization_pass.py 77.9 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
21
from ....framework import Operator
W
WangZhen 已提交
22 23
from .... import unique_name

24 25 26 27 28
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard

29 30
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
31 32
    'TransformForMobilePass', 'OutScaleForTrainingPass',
    'OutScaleForInferencePass', 'AddQuantDequantPass'
33
]
W
WangZhen 已提交
34

35 36 37 38 39 40 41 42 43
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

44 45 46 47
_fake_quant_dequant_op_list = [
    'fake_quantize_dequantize_moving_average_abs_max'
]

48
_out_scale_op_list = [
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    "conv2d",
    "depthwise_conv2d",
    "mul",
    "matmul",
    "relu",
    "leaky_relu",
    "relu6",
    "sigmoid",
    "tanh",
    "prelu",
    "swish",
    "softmax",
    "batch_norm",
    "elementwise_add",
    "pool2d",
    "reshape2",
    "transpose2",
    "concat",
    "elementwise_mul",
    "scale",
69 70
    "hard_swish",
    "hard_sigmoid",
71
    "conv2d_transpose",
72 73
]

74 75 76
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
77
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
78
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
79
    "mul": [["X", "Y"], ["Out"]],
80
    "matmul": [["X", "Y"], ["Out"]],
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
97
    "transpose2": [["X"], ["Out"]],
98 99 100 101 102 103 104 105 106
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
107
    "prelu": [["X"], ["Out"]],
108 109
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
110 111
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
112
    "sigmoid": [["X"], ["Out"]],
113 114
    "elementwise_mul": [["X", "Y"], ["Out"]],
    "scale": [["X"], ["Out"]],
115 116
    "hard_swish": [["X"], ["Out"]],
    "hard_sigmoid": [["X"], ["Out"]],
117 118
}

119 120 121 122
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

_channelwise_quant_axis1_ops = ['conv2d_transpose', 'mul']

W
WangZhen 已提交
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
def _get_op_input_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


def _get_op_output_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res


174 175 176 177
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
178
        'The scope cannot be set None.'
179
    assert place is not None, \
180
        'The place cannot be set None.'
181 182 183 184
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


185 186 187 188 189
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
190 191 192 193
    for var_name in _get_op_input_var_names(op_node):
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
194 195 196
    return is_input_all_not_persistable


197 198 199 200 201 202 203 204 205 206 207 208 209 210
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


211
class QuantizationTransformPass(object):
212
    """
213 214
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
215
    """
216
    _supported_quantizable_op_type = [
217
        'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul'
218
    ]
219

W
WangZhen 已提交
220
    def __init__(self,
221
                 scope=None,
222
                 place=None,
W
WangZhen 已提交
223 224 225 226
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
227
                 window_size=10000,
228
                 moving_rate=0.9,
229
                 skip_pattern=['skip_quant'],
230 231 232 233 234 235 236
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
W
WangZhen 已提交
237
        """
238
        Constructor.
239

W
WangZhen 已提交
240
        Args:
241
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
242 243
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
244
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
245
                parameters described above.
246
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
247
                the bias is not quantized.
248 249
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
250 251 252 253 254
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
255
            weight_quantize_type(str): quantization type for weights,
256 257 258
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
259 260
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
261
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
262
                will be presented in the name scope of an op. When the skip pattern is
263
                detected in an op's name scope, the corresponding op will not be quantized. 
264
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
265 266
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
294 295
                Default is None.

296

W
WangZhen 已提交
297 298
        Examples:
        .. code-block:: python
299 300 301 302
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
303
            from paddle.fluid.contrib.slim.graph import IrGraph
304 305
            from paddle.fluid import core

306
            graph = IrGraph(core.Graph(program.desc), for_test=False)
307
            place = fluid.CPUPlace()
308
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
309
            place)
310
            transform_pass.apply(graph)
W
WangZhen 已提交
311
        """
312
        self._scope = scope
313
        self._place = place
314 315
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
316
        self._skip_pattern = skip_pattern
317 318 319 320 321 322
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
323 324 325 326
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
327 328
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
329 330
        if activation_quantize_type not in quant_type:
            raise ValueError(
331 332 333
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
334 335
        if weight_quantize_type not in quant_type:
            raise ValueError(
336
                "Unknown weight_quantize_type: '%s'. It can only be "
337 338
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
339

340 341 342
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
343
        self._moving_rate = moving_rate
W
WangZhen 已提交
344

345 346
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
347
            assert op in QuantizationTransformPass._supported_quantizable_op_type, \
348
                op + " is not supported for quantization."
349 350
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
351
        ]
352 353
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
354

355 356 357
        self.create_var_map = {}
        self.create_op_map = {}

358
    def apply(self, graph):
359 360 361 362 363 364 365
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
366 367
        Returns:
            None
368
        """
W
WangZhen 已提交
369
        assert isinstance(graph,
370 371
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
372 373
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
374
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
375
        processed_vars = []
W
WangZhen 已提交
376

377
        def _quant_preprocess(op_node):
378 379 380
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
381 382
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
383 384
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
385 386
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
387

388
            if user_skipped:
389 390
                op_node.op()._set_attr("skip_quant", True)

W
WangZhen 已提交
391
        def _transform_forward(graph, op):
392
            op.op()._set_attr("quantization_type", "qat_with_weight")
393 394
            inputs = op.inputs
            for var_node in inputs:
395 396
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
397 398 399
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
400 401 402
                    name = var_node.name()
                    if name in processed_vars:
                        continue
403 404
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

                    # if var node is weight and weight_preprocess_func is not None,
                    # will insert weight preprocess func 
                    # to preorocess weight before quantization
                    # if var node is activation and act_preprocess_func is not None, 
                    # will insert activation preprocess func 
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op)

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
434
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
435
                        else self._activation_bits
436 437
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
438 439 440 441 442 443 444 445
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
                            _channelwise_quant_axis1_ops else 0
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
446 447
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
448
                            graph, var_node, name, quant_bits, quant_type)
449 450
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
451
                    dequantized_vars[name] = dequant_var_node
452
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
453 454 455

        def _transform_backward(graph, op):
            for var_node in op.inputs:
456 457
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
458 459
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
460
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
461

462
        if not self._is_test:
W
WangZhen 已提交
463
            self._create_global_step(graph)
464
        ops = graph.all_op_nodes()
465 466 467 468 469 470
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
471 472
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
473 474
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
475
        for op in ops:
476
            if op.name() in self._quantizable_ops:
477
                if not self._is_skip_quant(graph, op):
478
                    _transform_forward(graph, op)
W
WangZhen 已提交
479 480
        # The loop for renaming the inputs of backward op.
        for op in ops:
481
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
482
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
483
        graph.resolve_hazard()
484
        return graph
W
WangZhen 已提交
485

W
WangZhen 已提交
486
    def _create_global_step(self, graph):
487 488
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
489
            counter_name = cpt.to_text('@STEP_COUNTER@')
490
            for node in graph.all_var_nodes():
W
WangZhen 已提交
491
                if node.name() == counter_name:
492 493
                    self._global_step = node
            if self._global_step is None:
494
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
495 496 497 498
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
499 500 501 502 503 504
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
505 506
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
507
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
508 509
                increment_op = graph.create_op_node(
                    op_type='increment',
510 511 512 513 514
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
515 516
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
517 518 519
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
520

521
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
522 523 524 525
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
526 527
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
528
        elif quant_type == 'range_abs_max':
529
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
530
                                                       quant_bits)
531
        elif quant_type == 'moving_average_abs_max':
532 533
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
534

535
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
536 537 538 539 540 541
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
542
            name=self._quantized_var_name(name),
543 544 545
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
546
        scale_var_node = graph.create_persistable_node(
547
            name=self._quantized_scale_name(name),
548
            var_type=var_node.type(),
549
            shape=[1],
550
            var_dtype=var_node.dtype())
551 552 553 554 555 556 557 558
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
559 560
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
561 562 563 564
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
565 566 567
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
568 569 570
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
571 572
        return quant_var_node, scale_var_node

573
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
574 575 576 577 578 579
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
580
            name=self._quantized_var_name(name),
581 582 583
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
584

585
        scale_in_node = graph.create_persistable_node(
586
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
587 588
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
589
            var_dtype=var_node.dtype())
590 591
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
592 593 594 595 596 597
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
598 599 600 601 602

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

603
        if not self._is_test:
W
WangZhen 已提交
604
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
605
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
606 607
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
608
                shape=[self._window_size],
609
                var_dtype=var_node.dtype())
610 611
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
612 613 614 615 616 617 618
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

619
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
620 621
            outputs['OutScales'] = scales_node
        attrs = {
622
            'window_size': self._window_size,
W
WangZhen 已提交
623
            'bit_length': quant_bits,
624 625
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
626 627 628 629 630 631 632
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

633 634 635 636
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
637

638 639 640
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
641 642 643

        return quant_var_node, scale_out_node

644
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
645 646 647 648
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
649
            name=self._quantized_var_name(name),
650 651 652 653
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
654
            name=self._quantized_scale_name(name),
655 656 657
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
658 659
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
660 661 662 663 664 665
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
666 667 668 669 670 671 672 673 674 675

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
676 677
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
678
            _init_var_node(
679
                state_in_node,
680 681 682 683
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
684 685 686 687 688
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
689 690 691 692 693 694
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

731 732
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
733 734 735 736 737 738
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
739
            name=self._quantized_var_name(name),
740 741 742
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
743
        scale_var_node = graph.create_persistable_node(
744
            name=self._quantized_scale_name(name),
745
            var_type=var_node.type(),
746
            shape=[var_node.shape()[quant_axis]],
747
            var_dtype=var_node.dtype())
748 749 750 751 752 753 754 755
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
756 757 758 759
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
760
                'quant_axis': quant_axis,
761 762 763 764 765 766 767 768 769 770
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
771 772 773 774 775 776 777 778
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
779 780 781
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
782 783 784
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
785 786 787 788
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
789 790 791
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
792 793 794
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
795 796
        return dequant_var_node

797
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
798
                                   quant_bits, quant_axis):
799 800 801 802 803 804 805 806 807 808 809 810 811 812
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
813
                'quant_axis': quant_axis,
814 815 816 817 818 819 820 821 822 823 824
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32')
                out_node = func(in_node)
910
                graph.out_node_mapping_table[out_node.name] = var_node.name()
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test)
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
                graph.all_var_nodes(), target_out_node.name() + "@GRAD")
            in_node_grad = graph._find_node_by_name(
                graph.all_var_nodes(), target_in_node.name() + "@GRAD")
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
1014
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
1015 1016
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
1017

1018
    def _is_skip_quant(self, graph, op_node):
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
1031 1032 1033
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
1034 1035
        return is_skip

W
WangZhen 已提交
1036 1037 1038 1039 1040 1041 1042

class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
1043
                 weight_quantize_type='abs_max',
1044
                 quantizable_op_type=None):
1045 1046
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1047
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1048
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1049 1050
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1051 1052 1053 1054 1055 1056 1057 1058 1059

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
1060 1061
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1062
        """
W
WangZhen 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
1072 1073
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1074 1075
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1076
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1077 1078

    def apply(self, graph):
1079 1080 1081 1082 1083
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1084 1085
        Returns:
            None
1086
        """
1087
        # Get input scales in fake quant op and process weights
1088 1089
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1090 1091 1092
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1093
                input_arg_name = op_node.input('X')[0]
1094 1095 1096 1097
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
                    if scale_v.size == 1:
                        scale_v = scale_v[0]
W
WangZhen 已提交
1112
                    else:
1113
                        scale_v = scale_v.tolist()
1114
                    self._quant_var_scale_map[input_arg_name] = scale_v
1115
                    # Quantize weight and restore
W
WangZhen 已提交
1116
                    param_v = self._load_var(input_arg_name)
1117 1118 1119 1120 1121 1122 1123 1124
                    if isinstance(scale_v, list) and \
                        any(_check_grandchild_op_node(op_node, op)
                        for op in _channelwise_quant_axis1_ops):
                        quant_axis = 1
                    else:
                        quant_axis = 0
                    quantized_param_v = self._quant(
                        param_v, scale_v, self._weight_bits, quant_axis)
W
WangZhen 已提交
1125
                    self._restore_var(input_arg_name, quantized_param_v)
1126
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1127

1128
# Remove all fake dequant op
1129
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1130 1131 1132 1133 1134
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1135
        # Insert post dequant op
1136
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1137
        for op_node in ops:
1138 1139 1140
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1141
                if self._weight_quantize_type == 'channel_wise_abs_max':
1142 1143 1144
                    self._insert_post_channel_dequant_op(graph, op_node)
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1145

1146
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1147 1148
        for op_node in ops:
            for var_node in op_node.inputs:
1149 1150 1151
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1152 1153 1154 1155
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1156
        graph.resolve_hazard()
1157
        return graph
W
WangZhen 已提交
1158 1159

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1160 1161
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1162 1163
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1164
        else:
1165 1166
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1167
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1168

1169 1170 1171 1172
    def _insert_post_channel_dequant_op(self, graph, op_node):
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1173 1174 1175 1176 1177
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1178 1179 1180
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1181
            scale_v = self._quant_var_scale_map[original_var_name]
1182 1183 1184 1185 1186 1187 1188 1189
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1190
                scale_var_node = self._quant_var_scale_map[original_var_name]
1191

1192
        if len(op_node.output_arg_names()) != 1:
1193 1194 1195
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1196 1197
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
1198 1199 1200 1201 1202
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1203 1204
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1205 1206 1207
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1228
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1229 1230
        return dequant_var_node

W
WangZhen 已提交
1231
    def _insert_post_dequant_op(self, graph, op_node):
1232
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1233 1234 1235
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1236
        for var_node in op_node.inputs:
W
WangZhen 已提交
1237
            name = var_node.name()
1238 1239 1240 1241 1242
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1243
                new_in.clear_outputs()
W
WangZhen 已提交
1244 1245
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1246
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1247 1248 1249 1250
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
1251
                max_range *= param_range / scale_v
W
WangZhen 已提交
1252
            else:
1253
                max_range *= act_range
1254
                assert isinstance(scale_v, IrNode)
1255
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1256

1257
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1258 1259 1260
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1261 1262
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
1263 1264
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1265 1266 1267
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1268 1269
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1270 1271 1272 1273
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
1274 1275 1276 1277 1278 1279
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1280
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1281 1282 1283 1284 1285
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1286 1287 1288
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1289 1290 1291

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1292
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1293 1294 1295 1296 1297 1298
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1299 1300 1301 1302 1303 1304
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1328
    def _is_float(self, v):
W
WangZhen 已提交
1329 1330 1331
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1332 1333
    def _quant(self, x, scale, num_bits, quant_axis):
        assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
1334 1335
        if isinstance(scale, list):
            for i, s in enumerate(scale):
1336 1337 1338 1339 1340
                if quant_axis == 0:
                    x[i] = np.round(x[i] / s * ((1 << (num_bits - 1)) - 1))
                else:
                    x[:, i] = np.round(x[:, i] / s * (
                        (1 << (num_bits - 1)) - 1))
1341 1342 1343
            return x
        else:
            return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
1344 1345 1346


class ConvertToInt8Pass(object):
1347
    def __init__(self, scope, place, quantizable_op_type=None):
1348 1349 1350 1351 1352 1353 1354
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
                8bits weight tensors.
1355 1356
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1357
        """
1358 1359 1360 1361 1362 1363 1364 1365
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place

    def apply(self, graph):
1366
        """
T
tianshuo78520a 已提交
1367 1368
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1369 1370 1371

        Args:
            graph(IrGraph): the applied graph.
1372 1373
        Returns:
            None
1374
        """
1375 1376
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1377 1378
        input_map = {}
        for op_node in ops:
1379 1380
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1393
        graph.resolve_hazard()
1394 1395 1396 1397
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1398
        int8_var_node = graph.create_persistable_node(
1399
            name=cpt.to_text(int8_var_node_name),
1400 1401
            var_type=var_node.type(),
            shape=var_node.shape(),
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1417
        ops = graph.all_op_nodes()
1418 1419 1420 1421 1422 1423
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1424 1425 1426 1427 1428 1429
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1430 1431 1432 1433 1434
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1435
        """
T
tianshuo78520a 已提交
1436
        This pass is used to convert the frozen graph for paddle-mobile execution.
1437
        """
1438 1439
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1440 1441

    def apply(self, graph):
1442 1443 1444 1445 1446 1447 1448
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1449 1450
        Returns:
            None
1451
        """
1452
        ops = graph.all_op_nodes()
1453 1454 1455
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1456
                op_node.set_type('quantize')
1457 1458 1459 1460 1461 1462 1463
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1464
                op_node.set_type('dequantize')
1465 1466 1467 1468 1469 1470
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1471
        graph.resolve_hazard()
1472
        return graph
1473 1474


1475
class OutScaleForTrainingPass(object):
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(fluid.CPUPlace|fluid.CUDAPlace): The place is used to initialize new parameters.
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._is_test = None
1490
        self._teller_set = _out_scale_op_list
1491 1492 1493 1494 1495 1496 1497 1498 1499

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1500 1501
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1502
        self._is_test = graph.is_test()
1503 1504 1505 1506 1507 1508 1509
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
        for op in target_ops:
            for output_var_name in _get_op_output_var_names(op):
                in_node = graph._find_node_by_name(op.outputs, output_var_name)
1510 1511 1512 1513
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

1514 1515 1516 1517 1518
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
1519 1520 1521 1522 1523 1524 1525 1526
                data_type = 'float64' if in_node.dtype() \
                    == core.VarDesc.VarType.FP64 else 'float32'
                _init_var_node(
                    scale_node,
                    np.ones(
                        [1], dtype=data_type),
                    self._scope,
                    self._place)
1527
                ins = {'X': in_node}
1528
                outs = {'OutScale': scale_node}
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


1589
class OutScaleForInferencePass(object):
1590 1591 1592 1593 1594 1595 1596 1597 1598
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1599
        self._teller_set = _out_scale_op_list
1600 1601 1602 1603 1604 1605 1606 1607 1608

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1609 1610
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1611 1612 1613
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1614 1615
                var_names = _get_op_output_var_names(op_node)
                for var_name in var_names:
1616 1617 1618 1619 1620 1621
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1622
                    scale_name = self._scale_name(var_name)
1623 1624 1625 1626 1627 1628 1629
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1630 1631 1632 1633 1634

                    argname_index = _get_output_name_index(op_node, var_name)
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1635
                        + "_threshold", float(scale_value))
1636 1637 1638 1639 1640 1641 1642 1643
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1644 1645 1646


class AddQuantDequantPass(object):
1647 1648 1649 1650
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1651 1652 1653 1654 1655
    _supported_quantizable_op_type = [
        "pool2d", "elementwise_add", "concat", "softmax", "argmax", "transpose",
        "equal", "gather", "greater_equal", "greater_than", "less_equal",
        "less_than", "mean", "not_equal", "reshape", "reshape2",
        "bilinear_interp", "nearest_interp", "trilinear_interp", "slice",
1656 1657
        "squeeze", "elementwise_sub", "mul", "matmul", "relu", "relu6",
        "leaky_relu", "tanh", "swish"
1658 1659
    ]

1660 1661 1662
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1663 1664 1665 1666 1667
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1668
                 skip_pattern=["skip_quant"],
1669
                 quantizable_op_type=["elementwise_add", "pool2d"],
1670
                 is_full_quantized=False):
1671
        """
1672
        Constructor.
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
                parameters described above.
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1686
                quantized. Default is ["elementwise_add", "pool2d"]. 
1687 1688 1689 1690
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1691 1692 1693 1694 1695 1696
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1697
        self._skip_pattern = skip_pattern
1698 1699 1700 1701 1702 1703 1704

        if is_full_quantized:
            self._quantizable_op_type = \
                AddQuantDequantPass._supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1705
                assert op_type in AddQuantDequantPass._supported_quantizable_op_type, \
1706
                    op_type + " is not supported for quantization."
1707 1708 1709 1710
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1711 1712
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1713 1714 1715

    def apply(self, graph):
        """
1716 1717
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1718

1719 1720
        Args:
            graph(IrGraph): the target graph.
1721 1722
        Returns:
            None
1723 1724 1725 1726
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1727 1728
        dequantized_vars_map = collections.OrderedDict()

1729 1730 1731
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
        for op_node in all_op_nodes:
1732
            if op_node.name() in self._quantizable_op_type:
1733
                is_skip = False
1734
                if isinstance(self._skip_pattern, list):
1735
                    is_skip = op_node.op().has_attr("op_namescope") and \
1736 1737
                                   any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                elif isinstance(self._skip_pattern, str):
1738
                    is_skip = op_node.op().has_attr("op_namescope") and \
1739
                                   op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
1740 1741 1742
                is_quantized = op_node.op().has_attr("quantization_type") and \
                    op_node.op().attr("quantization_type") == "qat_with_weight"
                if is_skip or is_quantized or \
1743
                    (not _is_input_all_not_persistable(graph, op_node)):
1744
                    continue
1745

1746 1747 1748
                op_node.op()._set_attr("quantization_type",
                                       "qat_without_weight")
                op_node.op()._set_attr("activation_bits", self._quant_bits)
1749
                arg_names = _get_op_input_var_names(op_node)
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
                for arg_name in arg_names:
                    in_node = graph._find_node_by_name(op_node.inputs, arg_name)
                    if arg_name in dequantized_vars_map:
                        quant_var_node = dequantized_vars_map[arg_name]
                    else:
                        quant_var_node, _ = \
                            self._inser_quant_dequant_moving_average_abs_max_op(
                            graph, in_node, self._quant_bits)
                        dequantized_vars_map[arg_name] = quant_var_node
                    graph.update_input_link(in_node, quant_var_node, op_node)
1760

1761 1762
        # Backward stage, update input link
        for op_node in all_op_nodes:
1763
            if op_node.name() in self._quantizable_grad_op_type:
1764 1765 1766 1767 1768 1769 1770 1771
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node