wmt14.py 5.6 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Q
qijun 已提交
15
WMT14 dataset.
Q
qijun 已提交
16 17
The original WMT14 dataset is too large and a small set of data for set is
provided. This module will download dataset from
Q
qijun 已提交
18
http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz and
Q
qijun 已提交
19
parse training set and test set into paddle reader creators.
Q
qijun 已提交
20

H
Helin Wang 已提交
21
"""
Q
qiaolongfei 已提交
22
import tarfile
L
Luo Tao 已提交
23
import gzip
Q
qiaolongfei 已提交
24

25
import paddle.dataset.common
H
Helin Wang 已提交
26

Y
ying 已提交
27 28 29 30 31 32
__all__ = [
    'train',
    'test',
    'get_dict',
    'convert',
]
H
Helin Wang 已提交
33

Y
ying 已提交
34 35
URL_DEV_TEST = ('http://www-lium.univ-lemans.fr/~schwenk/'
                'cslm_joint_paper/data/dev+test.tgz')
H
Helin Wang 已提交
36
MD5_DEV_TEST = '7d7897317ddd8ba0ae5c5fa7248d3ff5'
Y
ying 已提交
37 38 39 40
# this is a small set of data for test. The original data is too large and
# will be add later.
URL_TRAIN = ('http://paddlepaddle.cdn.bcebos.com/demo/'
             'wmt_shrinked_data/wmt14.tgz')
L
Luo Tao 已提交
41
MD5_TRAIN = '0791583d57d5beb693b9414c5b36798c'
42
# BLEU of this trained model is 26.92
L
Luo Tao 已提交
43
URL_MODEL = 'http://paddlepaddle.bj.bcebos.com/demo/wmt_14/wmt14_model.tar.gz'
44
MD5_MODEL = '0cb4a5366189b6acba876491c8724fa3'
Q
qiaolongfei 已提交
45 46 47 48 49 50

START = "<s>"
END = "<e>"
UNK = "<unk>"
UNK_IDX = 2

Q
qiaolongfei 已提交
51

Y
ying 已提交
52 53
def __read_to_dict(tar_file, dict_size):
    def __to_dict(fd, size):
Q
qiaolongfei 已提交
54
        out_dict = dict()
Q
qiaolongfei 已提交
55 56
        for line_count, line in enumerate(fd):
            if line_count < size:
Q
qiaolongfei 已提交
57 58 59
                out_dict[line.strip()] = line_count
            else:
                break
Q
qiaolongfei 已提交
60 61 62 63 64 65 66 67
        return out_dict

    with tarfile.open(tar_file, mode='r') as f:
        names = [
            each_item.name for each_item in f
            if each_item.name.endswith("src.dict")
        ]
        assert len(names) == 1
Y
ying 已提交
68
        src_dict = __to_dict(f.extractfile(names[0]), dict_size)
Q
qiaolongfei 已提交
69 70 71 72 73
        names = [
            each_item.name for each_item in f
            if each_item.name.endswith("trg.dict")
        ]
        assert len(names) == 1
Y
ying 已提交
74
        trg_dict = __to_dict(f.extractfile(names[0]), dict_size)
Q
qiaolongfei 已提交
75 76 77 78 79
        return src_dict, trg_dict


def reader_creator(tar_file, file_name, dict_size):
    def reader():
Y
ying 已提交
80
        src_dict, trg_dict = __read_to_dict(tar_file, dict_size)
Q
qiaolongfei 已提交
81 82 83 84
        with tarfile.open(tar_file, mode='r') as f:
            names = [
                each_item.name for each_item in f
                if each_item.name.endswith(file_name)
H
Helin Wang 已提交
85
            ]
Q
qiaolongfei 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
            for name in names:
                for line in f.extractfile(name):
                    line_split = line.strip().split('\t')
                    if len(line_split) != 2:
                        continue
                    src_seq = line_split[0]  # one source sequence
                    src_words = src_seq.split()
                    src_ids = [
                        src_dict.get(w, UNK_IDX)
                        for w in [START] + src_words + [END]
                    ]

                    trg_seq = line_split[1]  # one target sequence
                    trg_words = trg_seq.split()
                    trg_ids = [trg_dict.get(w, UNK_IDX) for w in trg_words]

                    # remove sequence whose length > 80 in training mode
                    if len(src_ids) > 80 or len(trg_ids) > 80:
                        continue
                    trg_ids_next = trg_ids + [trg_dict[END]]
                    trg_ids = [trg_dict[START]] + trg_ids

                    yield src_ids, trg_ids, trg_ids_next

    return reader


def train(dict_size):
Q
qijun 已提交
114
    """
Q
qijun 已提交
115
    WMT14 training set creator.
Q
qijun 已提交
116

Q
qijun 已提交
117 118 119
    It returns a reader creator, each sample in the reader is source language
    word ID sequence, target language word ID sequence and next word ID
    sequence.
Q
qijun 已提交
120

Q
qijun 已提交
121
    :return: Training reader creator
Q
qijun 已提交
122 123
    :rtype: callable
    """
Q
qiaolongfei 已提交
124
    return reader_creator(
125
        paddle.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN),
R
root 已提交
126
        'train/train', dict_size)
Q
qiaolongfei 已提交
127 128 129


def test(dict_size):
Q
qijun 已提交
130 131 132
    """
    WMT14 test set creator.

Q
qijun 已提交
133 134 135
    It returns a reader creator, each sample in the reader is source language
    word ID sequence, target language word ID sequence and next word ID
    sequence.
Q
qijun 已提交
136

Q
qijun 已提交
137
    :return: Test reader creator
Q
qijun 已提交
138 139
    :rtype: callable
    """
Q
qiaolongfei 已提交
140
    return reader_creator(
141
        paddle.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN),
R
root 已提交
142
        'test/test', dict_size)
Y
Yancey1989 已提交
143 144


L
Luo Tao 已提交
145 146
def gen(dict_size):
    return reader_creator(
147
        paddle.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN),
R
root 已提交
148
        'gen/gen', dict_size)
L
Luo Tao 已提交
149 150 151 152 153


def get_dict(dict_size, reverse=True):
    # if reverse = False, return dict = {'a':'001', 'b':'002', ...}
    # else reverse = true, return dict = {'001':'a', '002':'b', ...}
154
    tar_file = paddle.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN)
Y
ying 已提交
155
    src_dict, trg_dict = __read_to_dict(tar_file, dict_size)
L
Luo Tao 已提交
156 157 158 159
    if reverse:
        src_dict = {v: k for k, v in src_dict.items()}
        trg_dict = {v: k for k, v in trg_dict.items()}
    return src_dict, trg_dict
L
Luo Tao 已提交
160 161


162
def fetch():
163 164
    paddle.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN)
    paddle.dataset.common.download(URL_MODEL, 'wmt14', MD5_MODEL)
R
root 已提交
165 166 167 168 169 170 171


def convert(path):
    """
    Converts dataset to recordio format
    """
    dict_size = 30000
172 173
    paddle.dataset.common.convert(path, train(dict_size), 1000, "wmt14_train")
    paddle.dataset.common.convert(path, test(dict_size), 1000, "wmt14_test")